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Using spectroscopic measurements vibrational and rotational tempera
tures were determined in the "ferroelectric" plasma source for different gas 
mixtures. It was shown that in this time-periodical, atmospheric pressure 
non-equilibrium discharge, both plasma temperatures differ strongly, and 
that the vibrational temperature is much higher (~ 3 kK) than the rota
tional one (< 1 k K ) . 

P A C S numbers: 33.10.Jz, 52.70.Kz, 52.25.Kn 

1. I n t r o d u c t i o n 
W e have put attent ion to the so-called ferroelectric p lasma , the periodic 

electrical discharge, which has been used for several appl icat ions i n chemistry 
and spectroscopic measurements [1]. T h i s low power (about few watts) discharge, 
o r ig inat ing f rom repolar izat ion of an ferroelectric plate i n electric field, generates a 
n o n - e q u i l i b r i u m p l a s m a i n gases at atmospheric or lower pressures. T h e p l a s m a is 
generated between two ferroelectric plates, or one ferroelectric plate and a second 
one made of other m a t e r i a l (metal or semiconductor) . In this second case, there is 
strong sputter ing and exc i tat ion of atoms f rom metal l i c electrode. It causes that 
such a p l a s m a emits an useful l ight for spectroscopic measurements (line strengths, 
branch ing ratios , etc.) [2, 3]. T h e source is i n non -equ i l i b r ium state, a n d most of 
its power goes to l ight emission, not i n heating of the gas. 

2. E x p e r i m e n t a l m e a s u r e m e n t s a n d r e s u l t s 

2.1. Experimental setup 

T h e "ferroelectric" p lasma was generated between two plates of ferroelectric 
ceramics, separated by approximately ha l f a mi l l imeter gap. T h e work ing gas flew 
between t h e m f rom one end to another. T h e input was by the end opposite to the 
monochromator . A l t e r n a t i n g voltage (5 k V , 50 Hz) was appl ied to the electrodes. 
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Because of periodic nature of the "ferroelectric" p lasma , the s ignal mea 
sured f r om p l a s m a source was t ime averaged over the short t ime near the m a x i 
m u m of the l ight intensity. L i g h t was collected by two lenses, imaged onto input 
sl i t (0.15 m m ) of the 1 m M c P h e r s o n monochromator . T h e monochromator was 
equipped w i t h the s tandard 1200 G / m m grat ing blazed for 300 n m and w i t h an U V 
sensitive photomul t ip l i e r placed behind the 100 / i m wide output s l i t . T h e s ignal 
f r o m the photomul t ip l i e r was averaged by the Pr ince ton A p p l i e d Research Boxcar 
Averager. T h e output boxcar s ignal was sampled and stored on a 4-channel d ig i ta l 
oscilloscope. 

T w o working-gas mixtures were used: a ir , and m i x t u r e of air w i t h few percent 
(about 4%) of argon. A qual i tat ive analysis of t ime integrated emission spectra 
shows some intense molecular bands i n the region f rom 200 to 400 n m (a m a x i m u m 
around 350 n m ) . T h e N j " , N 2 , N O and O H bands were detected, the last one due 
to ambient h u m i d i t y of the air w h i c h was used as p lasma- forming gas. T h e spec
t r a were collected dur ing an adequately slow continuous monochromator scanning 
(1 n m / m i n ) . In order to trigger the boxcar by the center of the the p lasma per iod , 
the l ight reflected f r om the input sl it blades was collected by a quartz fiber and 
detected by a second photomult ip l i er . T h e output s ignal f r om this photomult ip l i er 
was used as a trigger. Bands of the second posit ive system of nitrogen molecule 
C3IIu-B3ns i n Av = —2, —1, and 0 sequences were studied i n b o t h gas mixtures . 
T h e monochromator spectral band-pass (0.1 to 0.2 nm) was low enough to recover 
p a r t i a l l y resolved structure of the emission band for determinat ion of b o t h v i b r a 
t i o n a l a n d ro ta t i ona l temperatures. T h e monochromator apparatus funct ion was 
measured by means of a low-pressure H g l a m p . 

2.2. Analysis of results 

Spectra of the second posit ive system were analyzed by means of computer 
programs searching for the best Tv and T r temperatures to fit correctly a theoret
i ca l ly calculated spectrum to the exper imental band shape. 

T w o different fitting procedures were used: the first one (marked as "J4" ) has 
been elaborated i n the Inst itute of P l a s m a Phys ics , Czech A c a d e m y of Sciences, 
a n d the second one ( " 5 " ) originates f r om the Univers i ty of Orleans. N o correc
t i o n of the band intens i ty d i s t r ibut ion for the spectral sensit iv ity of the opt i ca l 
system has been made. However, i n our case, the spectral sensit iv i ty for spectra 
analysis can be considered as a constant because of the proper combinat ion of the 
photomul t ip l i e r spectral sensit iv ity and the grat ing blaze efficiency (the spectral 
sens i t iv i ty was checked by a continuous spectrum tungsten str ip l a m p ) . 

U s i n g the "A" procedure [4, 5] the ro tat iona l temperatures were found by 
fitting the beginning of Av = —2, —1 or 0 sequences after numer i ca l smooth ing and 
c o n t i n u u m subtract ion . T h e numer i ca l mode l has been based on the high-resolution 
analysis of the ro ta t i ona l system [6, 7] a n d on the H„j L o n d o n factors [8]. T h e 
(0,2), (0,1) and (0,0) N 2 bands were used for the Tr determinat ion . 

For v i b r a t i o n a l temperatures, the technique consisted i n a generation of 
band-profiles for given b o t h T r and ins t rumenta l funct ion , and subsequent sub
t rac t i on f r om exper imenta l spectra. T h e process was repeated t i l l the difference 
between s imulated a n d exper imental spectra was smaller than required. Resu l t ing 
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relat ive populat ions of the C3IIU state i n two v ibronic levels of v = 0 and v = 1 
determined the T v value. 

U s i n g the "B" procedure [9-11], the ro ta t i ona l and v i b r a t i o n a l temperatures 
have been found by unique common fit over a large complex spectrum of the over
l a p p i n g N 2 bands covering Av = —2, —1 and 0 sequences, wi thout any pre l iminary 
n u m e r i c a l smooth ing , any baseline subtract ion and supposing the apparatus func
t i o n as u n k n o w n . T h e numer i ca l band s imula t i on was based on the same l i terature 
data as i n procedure "A". T h e computer program is capable to s imulate the spec
t r u m of the C3ITU-B3ng t rans i t ion without l i m i t of wave numbers , v' a n d v", 
but i n order to ga in a t ime , we have s imulated only the overlapped (0,0), (1,1), 
(2,2), (3,3), (4,4), (1,0), (2,1), and (3,2) bands between the collected s ignal wave 
numbers . In order to determine the T r and T v temperatures f r om a given real (and 
noisy) spectrum, the best s imulated spectrum was compared po int -by -po int using 
a best-fit cr i ter ion w i t h four free parameters: Tr, Tv, apparatus w i d t h (supposed 
Gauss ian) and background level . T o test a noise sensit iv i ty of the temperature 
est imator , we s imulated some noisy spectra w i t h the help of r a n d o m numbers 
for the apparatus profile corresponding to the Gauss ian w i d t h of D X = 7 c m - 1 

(ha l f -w id th at 1/e height) , the noise-to-signal rat io of 0.025, 0.05 a n d 0.1 and the 
T r = T v = 3 k K . T h e best-fit cr i ter ion is found to be the good one, since the re l 
at ive s tandard deviat ion of the temperatures are at the same order of magni tude 
as the noise-to-signal rat io : AT/T = 0.015, 0.025 or 0.04, respectively. 

2.3. Results 

Figure 1 presents two measured and corresponding two s imulated spectra 
(procedure " 5 " ) f r o m two work ing gases. T h e v i b r a t i o n a l and ro ta t i ona l tempera
tures found i n b o t h cases are given i n Table . T h e exper imental results concerning 

T A B L E 
Experimental characteristics of the "ferroelec
tric" plasma in two different gas mixtures. 

Zone T v T 
A i r 

M o d e l A 2800 ± 200 K 450 ± 100 K 
M o d e l B 2800 ± 100 K 6 5 0 ± 100 K 

A i r + a r g o n 

M o d e l A 3200 ± 300 K 900 ± 100 K 
M o d e l B 3300 ± 200 K 800 ± 1 0 0 K 

the first f i t t ing procedure are marked as "A", those concerning the second proce
dure are m a r k e d as " 5 " . One can see f r om the table that i n air ro ta t i ona l and 
v i b r a t i o n a l temperatures are lower than i n the case of m i x t u r e (air w i t h A r ) , w h i c h 
can be explained by increasing of the power i n p l a s - i a because argon lowers the 
resistance of the p lasma . 
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Wavenumberfcm') 

Fig. 1. Comparison of the simulated and observed spectra for both gas mixtures: 
(A) air, (B) air + A r , (a) simulated spectra, (b) observed spectra. 

3. C o n c l u s i o n s 

In our exper imental condit ions, non -equ i l i b r ium nature of the "ferroelectric" 
p l a s m a is evident. Differences i n ro tat iona l and v i b r a t i o n a l temperatures show a 
s i m i l a r i t y of this discharge to a microwave discharge [12], even i f the last one is 
produced i n quite different pressures and frequencies. T h e difference of the t e m 
peratures, w h i c h shows the departure of the p l a s m a state f r om the loca l thermal 
e q u i l i b r i u m ( L T E ) or p a r t i a l L T E , may be however quite easily influenced by 
changing the gas pressure, appl ied voltage or frequency. 

T h i s p l a s m a m a y be very useful as a spectroscopic exc i tat ion source w i t h 
low Doppler widths a n d quite h igh exc i tat ion energy. 
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