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Abstract 

Following Stratonovich, we make a general analysis of the external force manifes
tations in the dynamics of Markov diffusion processes. Examples of the standard 
Brownian motion (Zambrini's "Euclidean quantum mechanics" included) and spe
cific Nelson diffusions are given as an illustration of the formalism. 

Let us consider1,2 a Markovian diffusion X(t) in Rl (space dimension one is 
chosen for simplicity) confined to the time interval t E [0, T], with the point of origin 
X(O) = Xo. The individual (most likely, sample) particle dynamics is symbolically 
encoded in the Ito stochastic differential equation, which we choose in the form: 

dX(t) = b(X(t), t)dt + v'2D dW(t) (1) 

with X(O) = xo, D a diffusion coefficient, W(t) a normalised Wiener noise, and the 
drift field b(x,t) is assumed to guarantee the existence and uniqueness of solutions 
X(t). They are then non-explosive, i.e. the sample paths of the process cannot escape 
to spatial infinity in a finite time. The rules of Ito stocltastic calculus imply that 
the transition probability density of the process (its law of random displacements) 
p(y, s, x, t), s :::; t solves the Fokker-Planck equation with respect to x, t 

atP 

limp(y, s, x, t) 
t_8 

D6xp - Vx(bp) 
h(x-y) s:::;t 

Following Stratonovich,3 let us transform (2) by means of a substitution 

expifl(y,s) 
p(y,s,x,t) = h(y,s,x,t) ifl( ) 

exp x, t 

which under an assumption that b(x, t) is the gradient field 

1 b2 
b(x,t) = -2DVifl(x,t) =} 2"[2D + Vb] = D[(Vifl)2 - 6ifl] 
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(2) 

(3) 

(4) 
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allows to replace (2) by the generalized diffusion equation 

ath = D6.x h - (-at<I> + D[-6.<I> + (Y'<I»2])h (5) 
limh(y,s,x,t) 8(x - y) 
t-+s 

Its (to be strictly positive) solution can be represented in terms of the Feynman-Kac 
(Cameron-Martin) formula, which integrates exp[- f; D(x, u)du/2mD] contributions 
from the auxiliary potential D(x, t) 

with respect to the conditional4 Wiener measure 

h(y,s,x,t) = J exp[-2~D [D(x,u)du]dW[y1x] (7) 

Since, as a consequence of (1), (2), h(y, s, x, t) must be strictly positive, we recognize it 
as the integral kernel of the dynamical semigroup operator exp[- 2~D f;(2mD26.-D)du] 
with the appropriate restrictions (continuity, boundedness from below) on D(x, t), and 
hence <I> implicit. 

Given p(y, s, x, t), we can utilise the Ito formula/,2,s,8 which states that, for any 
smooth function of the random variable, its forward time derivative in the conditional 
mean reads 

. 1 J hm T[ p(x, t, y, t + 6.t)f(y, t + 6.t)dy - f(x, t)] = 
L>t!O ut 

(8) 

= (D+f)(X(t), t) 

= (at + bY' + D6.)f(X(t), t) 

with X(t) = x. Then, for the second forward derivative (in the conditional mean) of 
the diffusion process X(t), in virtue of (4), (6), we have 

(D!X)(t) = (D+b)(X(t), t) = (atb + bY'b + D6.b)(X(t), t) = ~Y'D(X)t), t) (9) 
m 

This formula is a precise embodiment of the second Newton law (in the conditional 
mean) governing all Markovian diffusions consistent with (1)-(7). The auxiliary poten
tial D(x, t) plays here the role of the corresponding force field potential: a bit surprising 
outcome for anyone familiar with the large friction (Smoluchowski) limit of the phase 
space Brownian motion, however definitely an inevitable one, see e.g. Refs. 15,16. 

Our previous discussion refers to the individual (sample) features of a particle 
propagation in contact with the randomly perturbing environment: the Wiener noise 
is superimposed on the systematic field b(x, t) of local drifts. By attributing an initial 
probability distribution po(x) = p(x,O) to the random variable X(t), we pass to the 
statistical ensemble (hence collective) analysis. Because of (1), (2), the forward dynam
ics of the density p(x,t) = f Po(y)p(y,O,x,t)dy is uniquely defined. The microscopic 
law of random displacements p(y, s, x, t), s ::; t generates all possible random propa
gation scenarios (sample paths) from each chosen point of origin X(O) = xo, for the 
flight duration times t > 0. The statistical outcome (prediction about the most likely 
future of an individual particle) is casually considered as independent of the assumed 
probability distribution p(xo). However, once introduced, this density sets a statistical 
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correlation between individual members of the ensemble, even if there are no mutual 
interactions to be accounted for. An interesting ensemble characterization of the ran
dom motion is here possible by introducing (for Markov processes only) the transition 
density P.(y, s, x, t) 

p(x, t)P.(y, s, x, t) = p(y, s, x, t)p(y, s) (10) 

which allows to trace back the most likely statistical past of particles conditioned to 
comprise the evolving statistical ensemble with the distribution p(x, t). Indeed, in this 
case (see e.g. Refs.5,8), we can define the backward time derivative of the process X(t) 
(now supplemented by the distribution p(x, t)), which in the jointly conditional and 
ensemble (Refs. 6,7) mean reads: 

lim; [x-jP.(y,t-6.t,x,t)ydy] = (D_X)(t) = b.(X(t),t) (11) 
8t10 L.::.t 

with the corresponding Ito formula for f(x, t) 

(D_f)(X(t), t) = (at + b. \7 - D6.)f(X(t), t). (12) 

Because of (10), the drifts b(x, t) and b.(x, t) are not mutually independent, and indeed 
(Refs. 5,8,9) on domains free of nodes (p vanishing at the boundaries) we have 

b.(x, t) = b(x, t) - 2D\7ln p(x, t). (13) 

Consequently , the current velocity field 

1 
v(x, t) = "2(b + b.)(x, t) (14) 

can be viewed as the supplementary to p(x,t) (it induces the osmotic velocity notion 
u(x, t) = D\7lnp(x, t) = Hb - b.) in turn) characteristic of the stochastic flows. This 
time, elevated to the macroscopic (statistical ensemble )level. In terms of the local 
velocity fields u(x, t), v(x, t) both of which are gradient fields, one can explicitly (Refs. 
10-12) demonstrate that 

(D!X)(t) 

Q(x,t) 

1 
8t v + v\7v + -\7Q 

m 
26.pl/2 

2mD~ 
p 

(D~X)(t) (15) 

which extends the identity (9) to (D:'X)(t). With the density p(x, t) in hands, we can 
evaluate the mean (ensemble expectation) values of (15) and (9) 

E[(D!X)(t)] = E[(D~X)(t)] = ~E[\7n(X(t),t)], 
m 

(16) 

where because of (d. the original version of the Ehrenfest theorem13,14 in quantum 
mechanics) 

E[\7Q(X(t), t)] = 0, (17) 

there holds a classical Liouville equation in the mean, with the "Euclidean looking" 
potential (in view of the absence of a minus sign) 

E[(8t v + v\7v)(X(t), t)] = ~E[(\7n)(X(t), t)] 
m 

(18) 
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On the other hand, in virtue of the continuity equation, we have 

E[X(t)] 

~E[X(t)] 

J xp(x,t)dx :::} 

1 
Z(E[D+X] + E[D_X]) = E[v(X(t), t)] 

and furthermore (see also Ref. 15) 

(19) 

~ d 1 
dt2E[X(t)] = dtE[v(X(t), t)] = E[(8tv + vV'v)(X(t), t)] = m E[V'O(X(t), t)] (20) 

hence the "Euclidean looking" second Newton law is found to be respected by the 
diffusion process (1) both in the conditional (9) and the ensemble (15), (20) mean. 

Our previous discussion associates an a priori given drift (control) field b(x, t), t E 
[0, T] with a potential O( x, t). Clearly, we encounter here a fundamental problem of 
what is to be interpreted by a physicist (external observer) as the external force field 
manifestation in the diffusion process. Let us invert our previous reasoning and take 
not b(x, t) but O(x, t), t E [0, T] to be given a priori as a primary dynamical control for 
the Markovian diffusion (1), (2), which we are in principle capable to manipulate (the 
role attributed to the external observer). Then, we shall tell that the diffusion respects 
the second Newton law in the conditional mean, if 

(D~X)(t) = ~ V'O(X(t), t) 
m 

(21) 

holds true. 
The evolution in time of the gradient drift field b(x, t) and this (given a priori) of 

O(x, t) are compatible if 

8tb + bV'b + DD.b 

bo(x) 

~V'O 
m 
b(x,O) 

(22) 

It is a sufficient compatibility condition, which allows to derive the drift dynamics from 
this of O( x, t). In the time-independent case, there is no real freedom in the choice of the 
initial Cauchy data for Eq. (22), and an identity Oo(x) = m(DV'bo + ~b~)(x) = O(x, 0) 
must be satisfied. 

Eq. (22) sets a well defined Cauchy problem for b(x, t) in terms of O(x, t). If 
we associate an initial probability distribution Po(x) with X(O), then our (sufficient) 
compatibility condition (22) can be equivalently (f) written as the coupled Cauchy 
problem 

-V'(pv) 
1 
-V'(O - Q) 
m 
p(x,O),vo(x) = v(x,O) 

(23) 

where bo(x) = vo(x) + DV'lnpo(x), with the initial data essentially unrestricted, except 
for the time-independent case. 

Remark 1: One should not be misled by the seemingly complicated form of the non
linear coupled Cauchy problem (23). It is precisely Eq. (22), which guarantees its 
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solvability. Indeed, in virtue of the standard path integral identity: 

p(y, s, x, t) = 

t-s 
l:!.t = --,Zo = y,Zn = x,to = s,tn = t 

n 

(24) 

it suffices to know the time developement of the drift b(x, t) to have uniquely specified 
the time evolution of p(x, t) = f p(y, s, x, t)p(y, s)dy, once po(x) is given 

Remark 2: Since 

(25) 

we can perform the Stratonovich substitution (3) for each entry separately, and observe 
that 

n-l 

p(y, s, x, t) = exp[cJl(y, s) - cJl(x, t)] lim J dZ1 ••• Jdzn II h(Zk' tk, Zk+l, tk+l). (26) 
6tlO k=O 

The semigroup composition property is here clearly seen. This in turn justifies the 
procedures of Refs. 10-12. 

Example 1: Free Brownian dynamics 
Let us consider the initial probability distribution of the random variable X(O) of 

the Wiener (Brownian in the high friction regime) process in the form 

(27) 

Then its statistical evolution is given by the familiar heat kernel 

p(y, s, x, t) 
(X _ y)2 

[47rD(t - S)tl/2exp[ - , 
4D(t - s) 

(28) 

x 2 
[7r(0:2+4Dt)rI/2exp[- 1 

0:2 + 4Dt ' 
p(x, t) 

where s :::; t. 
Let us notice that since the density distribution is now defined for all times t > s we 

can introduce a convenient device allowing to reproduce a statistical past of the process 
(irreversible on physical grounds, but admitting this specific inversion mathematically) 

p(y,s) 
P.(y, s, X, t) = p(y, s, X, t)-(--) 

p X, t 

with the properties (set s = t -l:!.t) 

J P.(y,s,x,t)p(x,t)dx = p(y,s) s:::; t 

J y P.(y, s, X, t) dy 
0:2 +4Ds 4Dx 

X = X - 2 D l:!.t = X - b.(x, t)l:!.t, 
0:'2 + 4Dt 0: + 4 t 

(29) 

(30) 
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where b.(x,t) = -2DVp(x,t)/p(x,t) and quite trivially b(x,t) = O. Notice that by 
defining v(x, t) = ~b.(x, t) , because of the heat equation we have satisfied (23) with 
n = 0, and . 

(pv)(x,t) = J p(y,s,x,t)Po(y)vo(y)dy 

Example 2: Free quantum evolution as a diffusion process 
By defining 

I (x - Y + 2Dty/o.2)2 
p(y,0,x,t)=(41rDttI2 exp[- 4Dt ] 

we realise that 

(31) 

(32) 

a. X 2o.2 

[11'(0.4 + 4D2t2)jI/2 exp [- 0.4 + 4D2t2] 

= p(x, t) (33) 

and 

J 2Dy 2 -1/2 _ 2D(o.2 - 2Dt)x _ 
p(y,0,x,t)[-2 (11'0. ) ]dy - 4 4D22 - b(x,t)p(x,t), 

a. 0.+ t 
(34) 

where evidently 
v(x, t) = b(x, t) - DV p(x, t)/ p(x, t) (35) 

solves equations (23) with n = 2Q and via the familiar Madelung transcription of 
the free Schrodinger dynamics i8t~(x,t) = -D6.~(x,t) with ~ = exp(R + is),p = 
exp(2R), v = 2DV S the link between the Brownian type diffusion and the quantum 
mechanical evolution is established. 

Example 3: Uses of the imaginary time transformation 
The routine illustration for the imaginary time transformation is provided by con

sidering the force-free propagation, where apparently (see.e.g. Refs. 10-12) the formal 
recipe gives rise to (one should be aware that to execute a mapping for concrete solu
tions, the proper adjustment of the time interval boundaries is indispensable): 

with it -+ t. Then 

~(x, t) 

G(x - x', t) 

9.(x,t) 

h(x-x',t) 

i8t~ = -D6.~ 
i8tI/J = D6.1/J 

D6.9. 
= -D6.0, 

[p1/2 exp(iS)](x, t) = J dx'G(x - x', t)~(x', 0), 

(x - X')2 
(411'iDtt1/2 exp[- 4iDt ], 

J dx'h(x-x',t)9.(x',0) 

(X X')2 
(411'Dt)1/2 exp[- ;Dt ], 

where the imaginary time substitution recipe 

(36) 

(37) 

h(x - x', it) = G(x - x', t) , h(x - x', t) = G(x - x', -it) (38) 

seems to persuasively suggest the previously mentioned "evolution in imaginary time" 
notion, except that one must decide in advance, which of the two considered evolutions: 
the heat or Schrodinger transport, would deserve the status of the "real time diffusion" . 
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At this point let us recall that given the initial data 

(39) 

the free Schrodinger evolution 8t 'IjJ = - Db.'IjJ implies 

2 2 
( ) _ (~)( 2 . )-1/2 [_ x ] 'ljJx,t- a+2zDt exp (22'D)' 

1r 2a+zt 
(40) 

On the other hand, we have 

Let us confine t to the time interval [-T/2,T/2] with DT < a2. Then we arrive at 

where 

T T -- < t <-2 - - 2 (42) 

a 2 a2x2 

p(x, t) = (BB.)(x, t) = [1r(a4 _ 4D2t2//2 exp[ - a4 _ 4D2t2] (43) 

with the following interesting outcome, which is certainly unpredictable if one follows 
the traditional Brownian intuitions: p(x,-T/2) = p(x,T/2). However strange this 
probabilistic evolution would seem, it simply refers to a conditional Brownian motion 
(in fact the Brownian bridge with smooth ends), and clearly nothing like the "imaginary 
time diffusion" is here involved. We have rather executed a mapping from one real time 
diffusion to another, with the incompatible dynamical priciples at work. 
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