Lévy

flights, Lévy semigroups and fractional qguantum mechanics

Probability density function dynamics and its heavy-tailed
asymptotics (invariant pdf) induced by:

Lévy flights - hint: gradient perturbations of symmetric stable
and (quasi-) relativistic noise generators

Lévy-Schrodinger semigroups - hints: additive perturbations of
nonlocal noise generators, Schrodinger’s boundary data problem

Wiener noise - hints: specific gradient perturbations of the Laplacian,
logarithmic potentials, heavy-tailed asymptotics of diffusion processes

Pseudo-differential QM - hints: analytic continuation in time,
holomorfic semigroups, unitary dynamics, pseudo-differential
spectral problems, ground state induced jump-type process




Gradient perturbations of noise generators: standards
J. Math. Phys. (1999), (2000)

It is worth noting that when the transition function is stochastically continuous (see Sec.
IV B), then the corresponding semigroup T, in Cy(R) defined by

=" poksmd e

1s strongly continuous, and so its generator L is densely defined.
In such a case we can also define an adjoint semigroup T7* acting on the space of (probability)
densities L'(R, dx),

(TFp)u)= " pilulv)p(v)dvu. (22)

Its generator we denote by L¥*.

L=Ly+bV L*¥=Ly—V(b-)

transition probability function of the process u(f) satisfies the backward equation

ap,(ulv) ,
—ar Lopiul-)v)+b(v)V, plulv) First Kolmogorov eq.
and the forward equation (the Fokker—Planck equation analog)

&Pr(”h’}

Y =Lop( - loNWu) =V [b(u)p(ulv)]. Second Kolmogorov eq.

This equation determines the time evolution of pdfs (given, the initial data)



Brownian (Wiener noise) detour

Gradient perturbation of | Ly = DA L=DA+bV Diffusion generator
L*=DA—-V(b-) atﬂ = Dﬂ,ﬂ -V “? - ,ﬂ:l : Fokker-Planck equation
stationary asymptotic regime plr,t) — po(z) <= blz) = DV In p,

make an ansatz U(z,1) = p(x,1) p:L-“EE{:rj

-~

. ‘ 1% H
exp(—tH /2mD)¥y = U — 9,¥ = [D& - Qm.D] U= -5 =1

(Schr-fj dinger) semigroup exp (_ tH Xgm D) (Additive perturbation of the Laplacian)

H>0 with bottom eigenvalue 0 V =2mD" 1/2

2
V(z) = 2mD? [b— + Tb]

Another form of the compatibility condition 2D

Typical values of D: D = h/2m D = kgT/mpj



Semigroup kernel vs transition density

MNote: suitable restrictons upon the semigroup potential need to be respected, to have a positive and
continuous  semigroup kemel function

L} ;;q‘1f| — ({'4x11[_|:f —_ *‘FH p” 7] f{ ]l.'J' ] ]/ "SIH'I H)ELFH] tf’ff ‘« iy | L, 'I]

We can relate the semigroup kernel and the transition density by means of Doob’s type
multiplicative transformation

Re: Doob’s transformation. For given X (t) let L be such that Lh = 0, h = 0. Then X;(¢)
is generated by Lp = h™'Lh = Lyg = h™'L(hg))

1.-":?. \

(4)

k(y.s, ».t) = ply. s, . f;—'
,[*‘4- LI'

plz.t) = /gn,y. s, t)ply, s)dy

dp=DlNp -V (b-p)

Gradient and additive perturbations of the Laplacian induce the same
pattern of dynamical behavior of the pdf p(x.t)



Eigenfunction expansions — the classics: heat kernel and Mehler’s kernel

For clarity of discussion, it is instructive to invoke explicit examples. We pass to one spatial dimension and rescale
(or completely scale away) a diffusion coefficient. Given a spectral solution for H = —A + V' = 0, the integral kernel

of e:{p[_—tf:f ) reads

Ely,z,t) = k(xz,y,t) = Zcxp{—ejt} ®;(y)23(z).
J
we assume €5 = () and the sum may be replaced by an integral in case of a continuous spectrum

Set V(x) = 0 identically. Then we end up with . the familiar heat kernel

k(y,z,t) = [exp(tA)](y,x) = (2m) /2 fﬂxpf_—p’zf} exp(ip(y — =) dp =

(4mt)~1/2 expl—(y — x)?/41]

Consider H = (1/2)(—-A 422 —-1)
k(y,x,t) = k(z,y,t) = [exp(—tH)(y, z) =

[7(1 — exp(—2t)) "1 exp[—(1/2)(2? — y*) — (1 — exp(—2t)) ! (zexp(—t) — y)?]

[ E(y, = t) exp|(y® — %) /2] dy = 1 actually defines a transition probability density p(y.0,z,t) = p(y, =, t) = k(y, z,t) pl'm{rjjpl-m[y}

_ o—ty)2
P(3,0,2,1) = pufaly) = [r(1 - ™)/ exp [—H]

L = b(y) Vy +(1/2)Ay, by) = —y Ornstein-Uhlenbeck process L* = (1/2)A, — V. [b(z) ] and b(z) = —=
5



Wherein Lévy-Schrodinger semigroups ?

First input: Schrodinger’s boundary data problem (1932)

Deduce the Markovian interpolation consistent with a given pair of
boundary measure data at fixed initial and terminal time instants
t1 < t9; A and B are two Borel sets in R.

m(A, B) /dlfdgiﬂ r.y).

]I’ﬂ(l y)dy = p(x.tq).

R

[ mi.g)de = plo.ta).
R

where | |
m(z,y) = fla)k(x, t1.y.t2)g(y)

f(x) and g(y) are of the same sign and nonzero, k(x,s,y.t) is an a
priori chosen, bounded strictly positive and continuous (dynamical
semigroup) kernel, t; < s < t < t9.

Bernstein vs Markovian, c.f. J-C. Zambrini (1986-7)



LR ]

Prescribing k(x, s, y.t) in advance, we have functions f(z), g(y) determined uniquely (up
to constant factors) ba marginal data. c.f. Beurling, Fortet, Jamison.

By denoting

Oz, t) = / flz)k(t1, z, x.t)dz

Bz, t) = /Fc[.r.t. z.t9)g(z)dz

it follows that

plz.t) =0z t)0,(x.t) = /p[y.ﬁ..a‘.f];:r[y.s::]dy.

O(x,t)
0y, s)’

ply,s.x.t) = k(y. s, x.1)
b<s<t<ty

Note: If we assume that g(z) = p./*(z), then likewise 6(z) = pi/*(z), so we end up with

previously mentioned Doob’s type mapping of a semigroup kernel into a transition density.

Useful concept, to be exploited later:

Targeted stochasticity as a specialized version of the Schrodinger boundary
data problem: given a predefined pdf p. ; ask whether it can be interpreted
as a unique asymptotic invariant pdf for each meber in the variety of
inequivalent Markovian processes (to be pre-selected as well) ? 7




Second input: elementary harmonic/functional analysis

Let us consider self-adjoint operators (Hamiltonians) with dense domains in L?(R), of
the form H = F(p). where p = —iV and for —oo0 < k < 400, F = F(k) is a real valued,

bounded from below, locally integrable function. For ¢ > 0 we have:

exp(—tH) = f_ - exp[—tF (k)]|dE(k)

dFE (k) 1s the spectral measure of p.

Let us set

1
v 2T

then the action of ezp(—tﬁ ) can be given in terms of a convolution: E:Ifji(—f'-ﬁ )1 = f =k,

where (f * g)(x) := [, g(z — z) f(z)d=.
If F(p) satisfies the Lévy-Khintchine formula, then k; is a positive measure for all £ > 0 and

-lEf:

[exp(—tF (p)]"

we arrive at the simplest (free noise) positivity preserving semigroups.
The integral part of the L-K formula 1s responsible for random jumps (v(dy) stands for the

Lévy measure):

F(p) = —_[_ m[t’:rpff-py) —1- ;fg;g]ﬂdy)



Third input: (pseudo) relativistic Hamiltonians

Fo(p) = [p|
Folp)=vpPr+m?i—m, m=0

(better known as Hy = v/ m2c! + c2p? — me?)
Within the ramifications of the Schrodinger boundary data problem set #(x,f) = 1 and
A.(x,t) = p(x,t) so that

[exp(—tH)p)(x) = pla.1)

where F(p — —iV) := H implies
Fo(p) = diplz,t) = —|V|p(z,t)
Fu(p) = 8ip(x,t) = —[V/—A + m® — m]p(x, 1)
Fy 1s a special (Cauchy) case of the symmetric stable probability laws and readily generalizes
to (we can parallel this step by a lift from R to R")
F, = [p/" = dip(z,t) = —|A["*p(x, t)

with 0 < p < 2. (Note: dip = Ap derives from the Wiener process and H = —A)



(_&}pfﬂf{f) — |&|,t.¢j2f(1,_} — |?|,uf(_,1} — _]'_‘(1 + ru‘) Sin{ﬂ-ﬂfﬂ} f(y} B f{i") d

w J |z—y|ttH

0 < p < 2 and the integral is interpreted in terms of the Cauchy principal value.

n-dimensional (x e R™) écncralization of the stable gelicljator

T [ fy) - f(x)

|&|#f2f{x) — _ﬂ-n-ﬂlr{_%)l ' |X — },rl,u-"‘ﬂ dﬂy - - /[f{X—F}’) _ f(X] yp(d}’}

vu(dy) stands for a (self-defining) Lévy measure ~ 1/[y[#+7"

e : : ) : Vilela Mendes (1996
Additive perturbation via Doobs’-type transformation o5 mer st 2002

0ip = A/ = f w(z|2)p(z) — w(zle)p(z)]d>

exp[®(z) — ©(y)]

w(zly) = w(zly) ~ 1/|z —y['** replace by wy(zy) ~ iz — g n
hp = —|_"'~.|{;gf = —exp(®) |A"exp(—®)p] + pexp(—®)|A[*? exp(®)
plz.t) — pe(x) = exp(2P) If a contractive semigroup exp(—tH ) is involved !
: - : , | | A2 p)? . Y 12
C}i‘I' — j_i]':[‘r IT = |.-"'_1"'|L|‘”"E + v{.}_} V = —~ 1/ ﬁ'{i"-ﬂ — II”::"-':-t:J e ['1}

,ID* TOU



,Rough” conceptual guide: Cauchy semigroup

J. Math. Phys. (1999)
a0,=—|V|6,—ve,,  4,0=|V|6+Ve, (21)

where V' 1s a measurable function such that:

(a) forallxeR, V(x)=0,
(b) for each compact set KCR there exists Cx such that for all xe K, V 1s locally bounded
V(.I) = Cﬁ .

Lemma 5: 1f 1=r= p=m and >0, then the operators T| defined by

s }{x}=Ef{ FX)exp

- [; V(Xs m”

are bounded from L"(R) into LP(R). Moreover, for each re[l,] and feL’(R), T;f 15 a
bounded and continuous function.

Lemma 7: For any p=|[ l._:::j ar.ul:llf e LP(R) there holds

(T{f ) (x)= [ﬁﬂif (x)f(y)dy, where k/(x,y)=0 almost everywhere

11



Lemma 8: k{(x.y) is jointly continuous in ().

Lemma 9: k! (x,y) is strictly positive.

let py(x) and p{(x) be strictly

positive densities. Then, the Markov process X| characterized by the transition probability den-
sity:

Vivasx.=k" (x }H[I't)
p [.}?' Laelt L .I'—.T[ ".}} H(}’,S}

(23)
and the density of distributions

p(x,1)=0,(x,t)0(x,1),
where

0y(x,0)= fﬁki’fx,_v}fma{v., O4(y,1)= Lk-&i_;tnmgum

is precisely that interpolating Markov process to which Theorem 1 extends its validity, when the
perturbed semigroup kernel replaces the Cauchy kernel.

Clearly, for all 0=s=¢=T we have

04(x,1)= fﬁk?”_sfx,_vw*fyﬁs}dy}

o(y,s)= J‘ka_j[x,_v}ﬂ[xjt)dx (24)

Association: set 6, = U, 8 = p'?, so getting p(z,t) = (06.)(z.t) = ¥(z,t)pt*(z) and
B0 = —HV with H = |V| + V



Response to external potentials (physicist’'s view)

Lévy-Schrodinger semigroups Langevin (SDE) scenario
H, = MAP? 4V = b(x) + AP (t) = d,p = —V(b- p) — MAJ*p
exp(—tH #j Targeted stochasticity

Schrodinger’s boundary data problem _
p(z,1) = pu(z)

& Hw = —A|A #"Illgﬂt - Vﬂw . P '
t 1} B \ |,-"_"'1|f-*.-'9 F}i.-'i b(z) — _Af |ﬂ|“*f‘,t?*|::t::| dr
40 = NAP0 + V0 S e

Orp ==V (b-p) — A|AJ/?

]

Oolz.t) = plx.t) exp]—D{z)]

. K|
B(x) = expl®(z)] = p/"(2) B (x, t\0(z. t) = pl(x, 1) //|

Ohp = HO.0% = —;"'I.ITET{}ZHI]':I|J’_‘"1|““'f2[l?:{pf—‘i[}jl,ﬂ] —V.p

ncompatible !

c.f. Doob’s h-transform 13

Oep = — exp(®) |A[**[exp(—®)p] + pexp(—@)|A|"* exp(®)



Pictorial intuitions (physics) concerning Leévy semigroups:
Levy processes in inhomogeneous media and thermal equilibrium

Figure 1. Random walk processes in inhomogeneous salience fields =(x) in two

(a) and one (b) dimensions. Source and target locations of a random jump are
denoted by y and x, respectively.

The Belik and Brockmann (2007) attractivity or salience field s(x) is identical with
our invariant pdf g,ix), while inthe explicit Boltzmann-Gibbs form !

p-(z) = Cexp(—=AV (z)) = exp(2d) A= (kgT)~ ! (kg is Boltzmann constant)

Gibbs-Boltzmann equilibria are incompatible with the Langevin (SDE) modeling of Levy flights 14



Cauchy driver:

Ornstein-Uhlenbeck-Cauchy process

E'JH-" = _.-'1'|||1I::r|||'-| + T[I'L’“;:lelr?]

Cauchy semigroup with the same (Cauchy pdf) target

plz,t) = U(z,t) pl/?(z)

- Al
“ 1 |T| Vf,r v:_ 172
P
N 2 T fa+ x
Vie) =2 |——— 4+ 2 M2 T2
T y/ (@ il -.,rf a— T

o 7
it =a° + I

The potential is bounded from below and above —
,weak confinement”, no pdf moments in existence.

invariant density and stochastic targeting

PulT) =

o)

m(a? + x?)

p.(x) = exp(2®)

(Set A=1 where necessary !)

1 P

L——="- -~~~ .| |+ T ==—
o= =TI e LR
] *~:HF' i

el — : .5
208l .« N -

a5 .|'1| \ I."/,- N _-2
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(V. Stephanovich —coll. (20105(
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Cauchy driver: targeted stochasticity in the time domain

Topological means semigroup-induced

—m— Langevin
—B— Topological

ot ————" ’0 Langevin - type process
- 0
l; - "
-

0.8 /

06 /

0.4
l.-:-='=._"
oo
0.0 — T —TTT T —TT T T T T

0.0 0.1 1 10 100

HW
T~
plx)

FIG. 1: Temporal behavior of the half-maximum width (HW): FIG. 2: Time evolution of Langevin-driven pdf pr(z,1) be-

for the OUC process in Langevin-driven and semigroup-driven ginning from the ll.llt-Lal data pL (I‘t _: 0) : 15(;1: +1) and
(topological) processes. Motions begin from common initial ending at thle pdf (20) (shown as "asymptote” in the figure)
data p(x,t = 0) = §(z) and end up at a common pdf (20) for for ¢ = 1. Figures near curves correspond to t values.
o=1.

plz,t) = U(z.t) X (z)

OUC and semigroup -induced dynamics with the Cauchy target pulx) =




Cauchy driver: targeted stochasticity in the time domain (confined noise)

. . a0 q
_ _ Langevin drift b(z) = ——(z2 +3)
Invariant density 8
2 1
px(z) = = (1+ Tg}g Semigroup potential V(z): = ,ﬁ’g — 1
" r? +1
U(z,t) = p(x,t) I{J;l':lj:;.!'] H“ = |Al+V(z)
Topological means semigroup-induced
4 4
Langevin - type process 10 ot
1=0.01 | -.f' »
3 3 ‘/ !
1 1 0.8+ ”
Topological process =0.1 Langevin-type . FTupﬁlﬂgical
A 067 [
X “ X : & ;"ir
a a /
=1 5 04 H-"IIII.-"
14 o 14 ] J
t=10 and p, 07 / g
A
o
0= T T ’ T T T —1 0 T T 'U,G ....,-F-...if....., T T
1.5 10 05 00 0.5 1.0 1.5 1.5 ) 1.5 0.01 0.1 1 10
X X t
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Direct semigroup inference: Cauchy oscillator and
the ground state —induced jump-type process

ﬁ'l;ﬂ = AV|+ (% z? — VD) A= _DA+ ("fgs"'z _5)

1D
direct reconstruction route:

(5 w) = A

f(p) the Fourier transform of f= piﬁ(:r}

K ~ ~ -
—Eﬂpf +vlp|f =Wof

k= (- 09)/ U(k) = f(p) o =Vo/ ¢ = (k/27)3
429 (k |
T~ kw(h)

Full spectral problem, c.f. Physica A 389, 4419, (2010) and Matecki and Lorinczi (2011) 18



A unique normalized ground state function of

a2 (k)

S = [kl(k)

is composed of two Airy pieces

that are glued together at the first zero yo of the Airy

function derivative:

do(k) = 4o {

14‘“[1:'! wniF]

1.4 -
1-2—_
1_D—-
D_B—_
D.E—_
D_d—-

0.2 -

0.0

Ai(—yo+ k), k>0
Ai(—yo — k), k <0,

— v, (p) - momentum space

wﬂﬂx}- coordinate space

’ -1
Ay = [Ai(—yg)\/Qyo] . yo ~ 1.01879297

19



p.(x) 0.(x)
061 = = -Gaussian 0.1 - - -G.aussian
E' 0.4 1 :iz 001
.TE ;LE 1E-3
E
2 0z 2 1E-4
; (b)
0.0 1E-54 B '
2 1 0 1 2 -3 2 1 0 1 2 3
FIG. 7: Normalized invariant pdf (30) (full line) for the
quadratic semigroup potential. The Gaussian function, cen-
tered at = 0 and with the same variance o® = 0.339598
is shown for comparison. Panel (a) shows functions in lin-
ear scale, while panel (b) shows them in logarithmic scale to
better visualize their different behavior.
,. Ao [ . 1/2
wp(x) = — Ai(t) cosz(t + yo)dt = p.’ " (z)
—Yo
K. Kaleta and T. Kulezycki (2009) - asymptotic decay of eigenfunctions

o for Hy = |A* + (22 — Vo) displays ~ |z| "G heavy tail for |z| > 1

20



,Reverse engineering” for the Cauchy oscillator 7+« = i;"-‘ﬁ Langevin route

(Eliazar and Klafter (2003))

For a given p, the definition of a drift function b(x)
(we put either A =1 or define b — b/A) is:

1 y —
(@) = = [[Vlp.(a)}dz =
1 xJ P*(I+y)_19x($) _
el Rl B

Inserting p.(x), Eq. (30), we get

’:jm Ai(t) sinz(t + yo )dt
fj"[} Ai(t) cosx(t + yo)dt

Lévy- Langevin drift b(z) =

dp = —|V|p—-V(bp)

F-P equation

21



b(x)

[L=

Drift b(x); Potential V(x)

FIG. 8: Langevin - type drift b(x) (curve 1) and its (force)
potential V() (curve 2), that give rise to an invariant density

(30).

= -VV(z), V(z)=— [blz)dx

a2 | Ag [ .
= Uy vo(z) = ;’/ Ai(t) cosz(t + yo)dt = py/*(z)

—Yo

22



Confinement hierarchy - case study of a diffusion-type alternative

L I ex) 1 |
el ) = ——— S A a =172
* vrllo—=1/2)) (1+ r2)o '
Dynamical semigroup reconstruction Langevin drift reconstruction
g 172 b(r) = ——— f (IV]p.)(x) dz
1;_\._ —1'I. |‘l|#'2|ﬁlk ||'-'|4-'|.;j'~.lI
- 1/2 _
e (jump-type process)

Bp=—=N(b.p) = AAp
Wz, t) = p(z,t) ,r;;l""j:;.a']
dipy = 0= =N{bp,) —~|V]|p,

That was about jump-type processes. What about diffusion-type
alternative, with the Gibbs-Boltzmann ansatz implicit, e.qg.

p=(x) = Cexp(—AV(2))

A= (kgT) ! (kg is Boltzmann constant)

Logarithmic potentials  V(x) ~ In(1 + =) b=-VV(zr)~-Vinp, 3



OUC invariant pdf

20 T T T T T T T T T T T /
Fa
i I'.

o0 Abnormal (heavy-tailed) asymptotics
el — 01 | . . )
. | of diffusion-type processes
g o] W
05 f-'l..-- x
T4 — _--_':{;_ T = )
— =001 |
1 —o01 [ |
—_ I.' I'.
R 10| — o) |

0.0
_ < FIG. 6: Time evolution of pdf’s p(z, t) for Smoluchowski pro-
. . . . ¥ = w_w
cesses in logarithmic potential In(1 4 z°). The initial ( = 0)
pdf is}set to be a Gaussian with height 25 and half-width
~ 107%. The first depicted stage of evolution corresponds to

- _ t = 0.01. Target pdfs are the members of Cauchy family for
h=-VV 'LJ']' ~ —VIn P a = 1,2, 3 respectively.

e ~ (14 ;rg] o An equivalent semigroup dynamics does exist !24



3.5
3.0

2.5 1

P1Lang(x)

—t=0.01

] ——o04
] —1

|
——1t=8 and p,*(x) II

Langevin-jumps (OUC)

3.5
3.0

2.5 1

p1ﬁam(x)

] — =0.01
| —o01

—1

| —10 |

——t=15 and p, (x) I|

Semigroup-jumps

3.5 diffusion

pwn(x)

Diffusive scenario: Wiener driver,
Note ! Cauchy pdf is a target

FIG. 2: Time evolution of pdf's p(x,t) for the Cauchy-
Langevin dynamics (panel (a)), Cauchy-semigroup-induced
evolution (panel (b)) and the Wiener-Langevin process (panel
(¢)). The common target pdf is the Cauchy density, while the
initial £ = 0 pdf is set to be a Gaussian with height 25 and
half-width ~ 10~*. The first depicted stage of evolution corre-
sponds to £ = 0.01. The time rate hierarchy seems to be set:
diffusion being fastest, next Lévy-Langevin and semigroup-
driven evolutions being slower than previous two. However
the outcome is not universal, as will show our further discus-
sion.

a
o? + x2) 25

p«(x) = m



Fractional quantum mechanics (rather dynamics only):
,deeply condensed matter”

Notes:

(i) L2(R"); H is a non-negative self-adjoint operator — —H generates a strongly continuous
positive semigroup exp(—tH)

(ii) Take 7 = t + is, Rer =t > 0. Then exp(—7H) is holomorphic. (iii) Consider ¢ | 0, we
are left with a unitary group exp(—isH). Re-define s — t € R.

We have id,1 = Hy and p(z,t) = (4))(z, t)

Use I;’” or a quasi-relativistic Hamiltonian, we get a pseudo-differential (fractional included)
quantum dynamics. How does p(x, t) behave 7

i0, 0 = H, ¥
H, = |AM? 4+ V()

AP

1/2
P+

If piﬁ 1s a ground state with the eigenvalue 0, then clearly V=

26



Free fractional evolution with the 1D Cauchy driver

i = |V

2 1 +¢2
7L+ (z— [+ (z + O

a'lll@ !
\/' Tl + 2

(z,0) = = |¢*(z, 1) =

Enhanced delocalization: dynamically developed bimodality of the pdf 7
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Instead of a summary: some (minor ?) quieries/problems

Lévy flights - well explored, sample path properties and Markovianess isues are
amenable to analytic and numerical methods

Lévy-Schrodinger semigroups — the induced pdf dynamics needs further exploration, no
rigorous results about X(t), sample path properties basically unknown (work in progress with
a numerical assistance) , Markovianess not necessarily obvious, albeit seemingly valid

Heavy-tailed asymptotics of diffusion-type processes — not obvious whether valid for
arbitrary (not generic!) initial data, possible (unexplored) problems with known
lower/upper bounds for solutions of parabolic equations e.g. text-book ,properties of
solutions of the Fokker-Planck equation”. Support coming from the semigroup reformulation

Pseudo-differential QM — spectral problems are hard, only a limited number of solvable
cases (stability of matter issues are well developed, not mentioned here). Scarse analytic
form of ground states The induced pdf dynamics is realized in terms of jumps, with well
defined jump kernels. No reliable results on sample paths behavior. Markovianess under
scrutiny. The ground-state process limited to an invariant measure ( hormalized square
of the lowest positive eigenfunction), of no physical relevance beyond this regime.



