Fortschr. Phys. 38 (1990) 6, 447 —475

Randomness in the Quantum Deseription of Neutral
Spin 1/2 Particles

Prorr GARBACZEWSKI

Institute of Theoretical Physics. University of Wroctaw,
PL-50 205 Wroctaw, Poland

Summary

Recently the path integral quantization of the classical spin model was accomplished by Nielsen
and Rohrlich. The configuration space of classical spin is the unit sphere with punctures at poles.
Motivated by tlhie fact that the Nelson’s stochastic mechanics idea was to randomize the configura-
tion space variable of the classical system, we give a review of the probabilistic approaches to the
quantization of spin 1/2, with emphasis on the Dankel’s problem of finding the probabilistic des-
cription of the Pauli equation in terms of stochastic diffusion processes. The original Dankel’s
analysis referred to the rigid top, and the problem of the point particle limit was left unsolved.
Our observation is that if the spin stochastic process refers to the unit sphere with punctures,
then Dankel’s results provide a solution to the Pauli equation with no need of extra limiting proce-
dures. The effects of the magnetic field can be successfully incorporated into the formalism.

|8 Motivation

The notion of stochastic spin and stochastic spin space was introduced on intuitive
grounds in the quantal description of spin systems [4, 16] see also [5] to deal with points
on the Liouville sphere which although randomly distributed, are nevertheless concen-
trated about a certain fixed point with a given variance.

In particular the above mentioned randomness has been attributed [16] to spin
fluctuations, which are understood as fluctuations of the random coordinate axis along
which spin is measured. They are to occur around a certain mean direction which isidenti-
fiable in the classical frame of reference.

Any notion of stochasticity needs a specification of the underlying random variable and
the dynamical rules (stochastic differential or difference equations) which govern its time
development. The principal objective of the present paper is to give a complete descrip-
tion of the random variables inherent in the quantum spin 1/2 notion, in the framework
of the stochastic diffusion processes. Since basically there are two types of the random
variables of interest, the discrete (jump processes) and continuous (diffusions), we shall
examine the applicability of the jump process decoding [33, 34] of the Pauli equation
to find it problematic in the absence of magnetic field, but specifically in case of the
homogeneous magnetic field where the interpretation in terms of random jumps is
harmed by the presence of nodes. The problem appears more serious than in case of diffu-
sion processes where Carlen’s theorem [17] seems to offer the way out.

The notion of stochastic spin is introduced in Section 4, and its dynamics in the pres-
ence of homogeneous magnetic field is described in terms of the stochastic differential
equation. In Section 5 we present the description of the Stern-Gerlach guantum pro-
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pagation in terms of diffusion processes, which is based on the short time propagation
solution of the corresponding inhomogeneous problem.

Although a byproduct with respect to our goal, we in fact give a solution to the
Problem 11 stated by NeLsox in Ref. [17].

2. Spatial orientation in the quantum mechanies of two-level systems

All self-adjoint operators in the two-dimensional Hilbert space can be represented by
complex matrices of the form

A=al + b3 (2.1)
where

7— 10 (01 (0 = i 0

=lo 1) *= o 27\ o ®"lo —

R (2.2)

b€ R3, a € R'.
Let the Liouville sphere {7t = (1, na, n3), 7| = 1} in R® be an index set for the family
of selfadjoint operators in J,

1 . =
B, = ) (I + na), || = 1. (2.3)

They are projections since P,* = P, and [1] all projections in J€, have the form (2.3).
The necessary and sufficient condition for two projections 7 = #’ to be orthogonal is
n= —n.

Eigenvalues of the matrix 4 (2.1) read a+b and the corresponding spectral decompo-
sition is given by

A=A, =+ b)) P, + (a— b)) P,

2.4
7= b/|B]. 4
Observable features of quantum systems are customarily attributed to projections (pro-
positions [1]). Let #(J,) be the set of all projections in J,. Generally states of physical
systems are identified with probability measures on the set of projections. However in
two dimensions Gleason’s theorem does not apply, thus leavingan open field to more or
less educated guesses. The typical approach amounts to selecting a subset of acceptable
probability measures by demanding that the expectation value of the projection P in
a given state (interpreted as a probability with which the proposition P is detectable in
the state D,) is:

x(P) = tr (D.P) (2.5)
for all P € £(¥,), where D, is a trace class operator of unit trace called the density

operator (matrix) of the state .
The most general form of the density operator D, reads [3, 4]

1
D,=5 (1+30) ek, Rl <1 (2.6)
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which in case of pure states (|x| = 1) is a projection D, = P,, The probabilistic charac-
terisation of the Hermitian operator Z5 in the pure state P, can be here computed to give

a(@6) = tr (F6P,) = Fn — E(33; P,)

(2.7)
o([2@ — ADP) = [F]2 — (#W)2 = Var (¥5; P,)

where E stands for the expectation value while Var for the mean square deviation of
Zd from 7@ in the state P,.
In case of |Z| = 1 we find

B(#5; P,) = cos (1, n);  Var (#3; P,) — sin® (¢, n) (2.8)

where (x/,\n) denotes an angle between ¥ and 7.
If « is a pure probability measure on (J,) then it takes the form
«(P) = (Pg, ¢) (2.9)

for all P. Here (.,.) denotes a scalar product in J, and ¢ is a normalised unit vector in
Iy Jlgll = 1.
Given a normalised unit vector 7 such that 7%#dp = ¢ holds true. Then

P p=0—
(2.10)
(P:(P" _{‘P—n)q":Pn(p
and consequently for any Pz, & == 7 there holds
1 . 1~
((p! P.t(p) : ”PJ:(PHZ o (PnPJ:Pn(p’ ‘P) o '_é' (1 + f"‘) = cos? E" (.l', ”II) (211)

which is supposed to give a probability with which a proposition P, is detectable in the
state ¢ for which P, is realised with probability one. Another form of (2.11) is

(s P.T(P) =tr (Pan) (212)

which is also called [4] a transition probability from the state P, to the state P,.

Although the inapplicability of the Gleason’s theorem could be overcome, still quite
a serious problem remains unsettled in connection with the above probabilistic inter-
pretation. Namely, if the notion of probability is introduced, it is rather inevitable to
identify the corresponding random variable. And there is an apparent discrepancy be-
tween the above probabilistic formalism and the familiar experimental understanding.
Namely, from the point of view of the experimental analysis [7] the expectation value
of a Hermitian operator is said to be the average over all eigenvalues which a considered
property of the particle is assumed to take in a given state. A single measurement yields
a single eigenvalue and a sufficiently large number of such single measurement repe-
titions generally shows up all possible eigenvalues. It is the average over them which is
usually compared with the quantum mechanical expectation value. Then, in connection
with spin 1/2 notion we can apparently say that whereas --1 eigenvalues of 74 represent
results of single measurements, it is the polarisation P = (¢) which tells us about the
average of such 41 outcomes for the spin particle ensemble (%) — 7 - P.

T'he problem is that while the random variable --1 is related to %d it is & itself which is
related to the notion of spin and it is not apparent at all what kind of randomness underlies
the average (5). This problem we shall address later while introducing the stochastic spin
notion.
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1
The representation (2.2) of Pauli matrices implies that ¢ = ( O) is the eigenvector of
P,, z= (0,0, 1) while (1) this of P_,. Since the group of rotations in R? is isomorphic

with SU(2)/Z, we can exploit the standard parametrization in terms of Euler angles
0=0=mn 0=¢ =27 0=y = 27 by attributing to each Euler rotation R(0, ¢, )
its double valued +-U(0, ¢, ) SU(2) group image. Accordingly [6—8]

i€ R —>i' = R0, p,y) i

R, ¢, )
cospcos @ — cos O singsiny,  cos psing + cos f cos @ sin p, sin y sin 0
= | —siny cos ¢ — cos 0 sin ¢ cos p, —sinysin ¢ + cos 0 cos ¢ cos p, cos ysin 6

sin 0 sin @ —sin 0 cos ¢, cos 0
(2.13)
induces
ud —i'c = U(0, @, p) usU(0, ¢, p)*
(2.14)
6 i .. 0 7
coS 5~ exp o (y + @), tsin 3 eXP 5 (p — )
U= . :
.. 0 ) L
i8in o-exp o (p — ), cos o expo(—y —¢)
Setting 4 = (0, 0, 1) we observe that:
RO, ¢, p) % = (sin y sin 0, cos p sin 0, cos ). (2.15)

1
The eigenvalue problem W6y = yy,y = --1is solved by spinors y, = (O) and yg = ((1))

respectively, while the analogous problem for ' = UuigU* is solved by
0 i
cos - exp - (v + 9)

.0
zsm?exp?(tp——w)

) (2.16)
"iniex —Z—(;— )
0 vSin e exp 5 Y — ¢
Xd = U( )_ :
1 ] )
cos = exp 5 (—y — ¢)
. . i 1
respectively. Notice that —u is related to y = 1<+ y, = —U o) 7= —1l<
0

"
For further purposes let us observe that for y = (a exp Z_s)‘, a® + b* = 1 the expec-
tation value of & reads [9] bexp

—

U= (y,0y) = (2ab cos (& — §), 2ab sin (¢ — {), a® — bg). (2.17)
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The quantum mechanical deseription of a non-relativistic particle with spin is provided
by the Pauli equation. We confine attention to neutral particles (neutrons), hence there
is to hold [6]:

2n
3.83 le| h

4 me

R = s
(——7;L+p&%)WGJ):ih&WUJ)
(2.18)

3¢ stands for the magnetic field.
The spatial dependence we shall incorporate to the previous formalism by demanding
that at the initial time instant of the Pauli propagation the wave function has the form:

(7, 0) = y(7, 0) - x(0, p, y) (2.19)

where (7, 0) is the time ¢ = 0 solution of the free Schrédinger equation

. 1 1 D P
1/)(7', t) — (nA2)3/2 iht 3/2 exp E p r _q(t) + -2—":t
(1457
X exp)— — (7 —q(t)?
(2A2 n 2zht)
m
(2.20)
= . pt
qm=q+%

describing in fact the Pauli propagation in the absence of magnetic fields. In such case
the wave function while initially peaked about the phase space point (¢, ) with the
spatial half-width 4 evolves freely in time to a new phase space location (q’(t), ﬁ) while
changing its shape (the corresponding probability distribution spreads out).

In below we shall mainly refer to the semiclassical propagation regimes. Then over the
time scales of interest spreading effects can be disregarded and the frozen Gaussian
evolution (11—13) applies:

5 1 1 .. I pt
p(r, t) = (n_fl—z)sﬁ exp {—TA? (r - q’(t))2} exp 17 P (r —q — ;_m) (2.21)
In fact for neutrons with the de Broglie wave-length ~ 2 A the (mean) velocity is
~ 2000 m/s. The uncertainty relation 4 - A, = #/2m implies that the velocity dispersion
A, ~ 10 m/s corresponds to the spatial dispersion 4 ~ 1073 m. It in turn implies the
validity of the classical description [10] on the time scales 7' = mA2/h ~ 10 s.

For » = 2000 m/s neutrons, the mean transit time on a distance of 10 m is less than
5 - 1073 while typical distances which appear in neutron experiments are much smaller.

Remark 1: By the particle beam (statistical ensemble notion) we understand the
result of the operational recipe of injecting single neutrons into the experimental arran-
gement [14]. Their mean velocity and initial position-momentum dispersions are con-
trolled in a reproducible series of single particle procedures (state preparation). It is then
the totality of all single particle flights through the arrangement, which constitutes the
particle beam. In particular for the mean velocity » neutrons, and the source-detector
distance being L the initial wave function peak after the mean transit time L/v = T'

.
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approaches the detector location: it means that a substantial fraction of neutrons
reaches the detector after about the mean transit time. If the detector active (neutron
sensitive) area has a spatial extent exceeding the weave function half-width, then the
operational localisation of the one-particle quantum mechanical state is possible with a
confidence level [15, 16] close to 1, albeit never equal 1.

Remark 2: Although in the non-relativistic quantum mechanics the sharp localisation
concept is mathematically well defined and the probability distribution |y(7, #)[* in
fact refers to the spatial distribution of point particle representatives of the beam, one
should always keep in mind that we deal with a drastic oversimplification. The detection
of a single particle is always spatially unsharp [5, 16]. One may here refer to the particle
extension proper to each microparticle. On the other hand, the literal understanding
of quantum mchanical wave functions is possible in the framework of NELsON’s sto-
chastic mechanics [17] in terms of stochastic trajectories (sample paths) of certain
stochastic processes. Then the operational localisation of the one-particle state does
automatically involve an element of stochasticity. Wave functions appear to govern the
statistical dynamics of collections of individual stochastic trajectories. Although this
dynamics is provided by the Schrédinger equation simultaneously for all of them, it is
the particle beam notion which involves certain set of realized (among possible to follow
scenarios) sample paths, of the individual particle motion. Hence it is quite natural to
associate the stochastic extension notion with one-particle states. The Gaussian half-
width is an example of the appropriate stochastic extension measure.

Let us however emphasise that the stochastic extension concept is very different from
the individual particle extension, which we in fact disregard in further considerations
(the point particle notion is used). Apart from the variety of proposals, take e.g. [15,
18 —20] as a sample, the origin of the proper particle extension is as yet not deducible
within the framework of quantum theory.

3. Randomness in spin space: Jump processes viewpoint

As long as the magnetic field is spatially homogeneous, the space and polarisation (Euler
angles) variables remain uncoupled. It is thus rather easy to isolate the spin space
stochasticity from this related to spatial motions [17, 13, 14].

As mentioned in Section 1 to have a proper description of stochastic features asso-
ciated with the notion of spin, we must identify the random variable involved.

There is no general agreement in the literature on this issue. One may think [4] of the
Liouville sphere to consist of stochastic points, which in a particular spin state are
peaked about the polarisation % with the variance Var (iid), = sin? (n/,\u) referring to
E(ii), = cos (n,u). It obviously presupposes the classically inspired spin model:
classical spin vectors are subject to stochastic fluctuations of their direction. An analysis of
this problem within Nelson’s stochastic mechanics was attempted in [3] see also [17, 22,
23]. The path integral derivation of the spin space propagator [24—26] follows the same
idea, see also [27, 28].

However the above intuitions do not apparently fit to the probabilistic framework
of Section 2.

At this point we may take an inspiration from the algebraic isomorphism between
spinor rotations and the laser stimulation [29, 30] of transitions between two atomic or
molecular states of any total angular momentum. In this case a concept of rotation is
broadened to include not only the physical orientation alterations, but also the stimulated
transitions between two selected states of the system. Another motive behind is ob-
viously the 41 would be random variable of Section 2 and the fact that the path inte-

Fortschr. Phys.

gration over discrete )
analysis of the Pauli eq
[34, 19] see also [23, 3¢

For neutral spin 1/2

H spin — qufjé
implies the Schrodinge:

[y, 1) = exp (-
By denoting ¥ = 5,

Hspln = ,ugf’ﬁi
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gration over discrete spin space is known [31, 32] and there is available a probabilistic
analysis of the Pauli equation in terms of dichotomic (i.e. two valued) random variables
[34, 19] see also [23, 35].

For neutral spin 1/2 particles (e.g. neutrons) the interaction Hamiltonian

)7 T . (3.1)
implies the Schrédinger evolution of the spin state

[, t) = exp (—iHspint/R) |y, 0). (3-2)
By denoting % — Jn, |n| = 1 and exploiting the diagonalisation formulas, we obtain:

Hpiy = pHnc = hono

(3.3)
né = P, — P_, '
which obviously identifies Zeeman energies relative to the direction 7.

As a consequence, to implement the individual spin flip i.e. jump from one Zeeman
state to another, we must allow the particle either to absorb or to emit the energy fhw.
This effect is well known from the spin resonance experiments [36, 37] where the polari-
sation of the spin state becomes reversed, see also [29, 20, 28].

Let us consider the spin state dynamics in the magnetic field appropriate [39] for

Rabi experiments # = (J, cos wt, I, sin ot, I,):

it 0y |y, t) = u(JE3) |y, t)

1 (3.4)
== X+
|w, 0) = (O) — |y, t) = (X—) (t)
which implies:
o —y .ot
1) = [cos ot + 3 sin 6t] exp (—z ?)
. ‘V.'_1 .ot .
x-(t) = —¢ 5 ©XP (t 7) - sin ot
1
0 =5 (&* + ¢* + 2wg cos 02, g = (1 + 442)12 (3.5)

v = 2uHolh, A= I, 25,

tan 0 = %.

The smooth dependence on o allows to set w = 0, when we are left with K= (5,0, ¥,),

0 = (ufh) (Ho* + JE,)!2

1Iy

sin ot

%+(t)= cos 6t — 1
(3.6)
y(t) = —i 7’;‘3 J€, sin ot .
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If we set #, = 0 then

7.4(t) = cos wyt W, = % I,
(3.7)

7_(t) = —isin wyt.

Our initial polarisation assumption was |y, 0) = ( O) so that |y, 0) is the eigenvector of

the projection P,, Z = (0, 0, 1). By (1) we denote the polarisation of |y, t). Let us employ
the Dirac notation

P,=M  Pa=dl (3.8)

1
Then |1) = (0) = |y, 0), }) = ((1)) and the expectation value of Section 2 reads:

1 ,~
(p, 8| P |y, 8) = (@t | 1) (v t) =111 t)[* = cos? 9 (Z, u(t)) = |x+(O)
(3.9)
while for the general solution (3.5) we have:

1, ~ 22
(w, t| P, |y, t) = sin? 5 (z, 'u,(t)) = |z-()]2 = % sin? ot . (3.10)

Both (3.9) and (3.10) are generally [38, 39] interpreted as probabilities for the spin flips
to occur. This probabilistic interpretation retains its validity in the special case (3.7) as
well, and introduces the notion of the discrete random variable for a stochastic analysis
of the spin dynamics, even if null Zeeman energies are related to spin flips. However sin
such case the physical background of the analogy between spinor rotations and stimu-
lated transitions breaks down. We must then try to find out what is physical difference
between the spin-up and down states when no energy splitting occurs. This problem
cannot be solved within the jump process framework and we shall come back to it in
Section 4.

A detailed jump process description in terms of random spin flips can be given follow-
ing [33]. Let 7 be the initial polarisation of the spin state. The expectation value

1 5.
(‘% t| Pen |95 t) — —E <1 + 7’"G>l o Q(tv 7')’ P = :tl (311)

gives us a probability distribution of the observable y7i¢ at time .
Let us absorb the coefficient 2u/# in the definition of J. The Pauli equation in case
of the homogeneous field implies the continuity equation:

)

duolts y) = = X H - (@), (3.12)

with the convention (7 X 5&'); = &,y Ik (56’ % 7 was originally used in [33]).
Once having chosen the initial polarisation, we may think of (3.12) to represent the
forward Kolmogorov equation for the Markov process o(t) with values in Z, = (—1, 1)

d b
—(%—Y) = —p(t, v) olt, y) + p(t, —7) ot, —¥) (3.13)
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where o(t, ) is the probability distribution of the random variable o(t) while p(t, y) is
supposed to represent the jump (spin flip along the polarisation direction n) probability
per unit time form the state y € Z, to —y. This interpretation is consistent upon the
identification [33]:

_ 1L 2 (et =)\ 5 x HE),
pity) =5 [Inxﬂfl (W) Y o) ] (3.14)

Let us indicate that the above formula allows the spin flips to occur only if J€ has a non-
zero component perpendicular to 7. If we replace J by (2u/#) J in (3.14) we can analyze

the meaning of p(t, y) for a specific example (3.7). We set J = (J,, 0, 0) and denote
wy = p/hIE,. Since 7% = (0, 0, 1) we have:

ot, +) = cos? ant  p(t, —) = sin2 et

5 (3.15)
Tﬂ (i X H) = 20,(0,1,0), (3), = (0, —sin 2wy, cos 2w,)
which implies
t, +) = w,[|tan w,t| 4 tan w,t
»( ) [l of| it] (3.16)

p(t, —) = w,[|cot wyt| — cot w;t].

The singular behaviour is here induced by the nodes of oft, y). At this point let us em-
phasise that the original purpose of [33] was to show a complete equivalence between
the differential equations related to stochastic variables (probabilities and probability
densities) and the Pauli equation itself. It is a priori possible only if there are no nodes.
Although the nodal surface problem has been partially overcome in the diffusion pro-
cesses framework, the situation in the discrete case seems conceptually to be much
worse: p(t, 1) — oo as w,t — nzx/2.

We view thus (3.14) as a possible consequence of the Pauli equation but by no means
can state the reverse.

As follows from (3.16) the polarisation (), after w,t — /2 reverses its direction, while
after w;t = = it comes back to its initial direction. It is reflected in (2.17) by very differ-
ent spin flip scenarios. Indeed for 0 < w,t < z/2 the spin flip probability from up to
down direction grows up from 0 towards infinity, while p(t, —) = 0. For z/2 < w,t < =,
p(t, —) in turn grows towards infinity while p(t, +) = 0. Thus there is no coexistence of
spin-up and spin-down individual flip possibilities at any time instant, which seems to con-
tradict the well founded intuitions. The stochastic process related to (3.7) involves one-
way spin flips only in each #/2 interval run by w,t beginning from ¢ = 0.

As is well known the spinor wave function changes its sign under the 2z rotation. This
phase effect is completely beyond the jump process scenario, although by now it is well
known that this sign change has observable consequences [44]. In fact one is able to
distinguish atoms which have undergone one transition to the second state and back
again to the original state from atoms, which have undergone no transition at all [45,
46, 29, 30]. The analogous situation is known to arise in neutron interferometry, hence
although the jump process description does not provide any hint, there is a detectable
difference between the spin (polarisation) up and spin-down states even if there is no
Zeeman energy splitting among them.
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4. Randomness in spin space: Diffusion processes viewpoint
1.1 Stationary diffusions

For mass m particles me? stands. for their rest frame energy. Let us consider the wave
function:

W, 0, ¢, y, 1) = exp % (B — hot) P(0, ¢, p)

7 (4.1)
= — | mc?
2m
with P fixed. Let us demand the following equation to hold:
. h? 1 .
% = | — / — M2
ih &,(t) ( 5—4 + 55 M ) w(t)
o2 0 1 (e e ot 0 2 4
ﬂz:—h2{f+(‘0t0,—+.— —+'C— —26(.) - .
06? a0 sin?0 \oyp* = o¢? sinf op oy
Setting
3 h?
I= 8 me? (4.3)
we arrive at
3
M0, 9, v) = 5 W20, 9, y) (4.4)

4
whose solutions in the Hilbert space _'l’z(SO(3)) of the SO(3) square integrable functions

2n 2x
I = [do [ do [ dy [P0, ¢, ) (4.5)
0 0 0

constitute the four-dimensional orthogonal system. If normalised, they read:

; 0 )
(279012 ¢, = i cos - exp 5 (y + 7)

.0 )
(272 ¢, = —i sin 5 €Xp —;— (p — )
(4.6)
(-).[3)1/2 — si 4 A\ i
27 63_s11?cxp7(—(p+y))
(22312 ey = ¢ 0 il )
73) e4fu)s§expE(—q,—zp).
Components of M,[M;, M il = ihe;; M, have the form
e 0 é cos @ 0
M, = ik |sin ¢ — + cot 0 cos ¢ — — — .
1 = th (sm ¢ gy 1 cobleose % anb '(Mp) (4.7)
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. 4 . 0 sing @
M, =ik (—coswﬁ + cotﬁsn\(pw ~ g %)
0
My = —ih —.
o

However one more angular momentum can be defined [22] on the linear span of (4.6)

[Nij]—:ihEiika, szﬂz’ [Niy ]’[1‘]— =0

. . 4 0 cosy 0
= i — — 4.
N, =1 (sm Y70 + cot 0 cos p oy sinf a(p) (4.8)

0 siny @

0 0
szih(costp———cotﬁsincp ), N;,:iﬁ-g—.

a0 dp  sinf dg
Accordingly the eigenfunctions (4.6) can be classified by means of the maximal commut-
ing set M2, My, N, of operators. The wave equation (4.2) was originally exploited in
[3, 22] to investigate the extended particle (rigid rotator) model of spin, and the corre-
sponding diffusion on SO(3) was completely analyzed in [3, 17].

Passing to point particles one needs a clear picture of random variables involved. Let
us take a unit vector pointing out directions in space. It runs the Liouville sphere, hence
is completely given in terms of two angles (cf. (2.15)). Let us puncture [26] the Liouville
sphere to equip it with the north and south poles. Now, points of Liouville spheres
whose poles have distinct orientations can be uniquely given in terms of Euler angles.
Let us consider the unit vector 7(t) = 7(6, ¢, ) (t) as the random variable, which is
allowed to run not only a given Liouville sphere, but all available punctured sphere
orientations. We call this random variable a stochastic spin vector as referring to random
deflections 7(0, @, ) (t) on the surface of the punctured Liouville sphere, whose poles take
orientation at random.

Then L¥(SO(3)) can be called a stochastic spin space while the two-dimensional space
of Section 2 is the standard spin space.

Given a wave function ¥(0, ¢, y) = exp (R + iS) which does not vanish in an open
set. Accounting for the Riemann metric

1
o7 0 0
1 cos 6
g=10 2[sin?0  2Isin®0 ()
0 cos 0 |
21 sin2 6 2] sin2 6
we arrive at
1 ¢R
= — 2 i -
u = 2hdR h 7 30 db
- - (4.10)
v hdS h (@(p dy + 7y dw)
and after raising the coordinate indices
®, = gi By = gb (4.11)

defines the osmotic @, and current @, velocities related to the stochastic process of inter-
est. Since we deal with angular velocities, the corresponding angular drift @, + @,

5 Fortschr. Phys. 38 (1990) 6
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determines the angular momentum of the forward drift (a true random spin)
L = 1@, + @,). (4.12)

The angulax (osmotic and drift) velocities and expe(tatlon valuesof I and L? were com-
puted in [3] with the results (L) = 3/4 42 for all 4, and :

1 ' 0
— 1 'l' 1 R i __—>
Wy =T T oosb T cos0 ZI (€, + €,) Wy, o tan ey
1 b = h .
Dl e = = b 7] 2 — — oot —
@y T —cosf 31 (e, —'¢;) [ o] cot ) €g
(4.13)
. o
(L)i—3.4 = gk
- 1 - & (3 R g h : -
@o. = T cosg oL o T .o @ = g7 99t 3
1 h 4 o h LL
1 ,4 = e — [ — _— 4 — —— 8 —_—
W, 10 cos0 21 (—ep — €y) @y, o tan 3 €y

where {€,, €,, €5} is the basis system consisting of unit vectors about which the y, 6, ¢
Euler rotations are executed. Each of the basis functions (4.6) refers to its own stochastic
process, in the course of which the unit vector % is subject to random fluctuations about the
(mean) direction in case of e, e, and —L in case of ey, ey. Euler deviations are however
defined relative to I in both cases.

For a given function e;(0, ¢, p) the mean value (2/h) (L); defines a reference direction.
The random wariable 7(t) = 7(0, ¢, v) (¢) has assigned the probability distribution
lei(8, @, v)|%. Thus one can justifiably tell about a stochastic spin state which is centered
about k and —Fk directions respectively, see e.g. [4].

The general form of the stochastic differential equation describing random trajectories
drawn by 7(t) is

dii(t) = b(a(t), ) dt + dW () ‘ , (4.14)

where b is the forward drift, while dW (¢) refers to the random noise. Since in our case
n(t) is to label points of the punctured Liouville sphere, d7i(t) refersto the rate of change
of the unit vector in R?® under an infinitesimal rotation. Apparently

diit) = #(t) x dO(ai(t), t) ‘ (4.15)

where % denotes the vector product in B3, and the rate of change of Euler angles follows
from the stochastic differential equation

dD(ii(t), t) = @, + B,) dt + V2 dai(t)

h_llmc2
21 3 &

(4.16)

—

Here » is the diffusion coefficient, while da(f) represents the Wiener noise. A conven-
tional discussion of the rotational Brownian motion can be found in [64].
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The probabilistic formulas in the above refer to all possible to realise rotations
(sample paths of the stochastic process). The probability density formulas |e;[2 (6, ¢, y)
show that while being randomly triggered, the random variable 7(t) resides mostly about
6 = 0 in case of e;, ¢; and § = 7 in case of ey, ¢,. Large 0 (i.e. § ~ x) deflections from the
mean location are very improbable in the course of the process.

Formulas (4.13) show that once deflected to the angle 0 the vector 7i(t) gets subject to
the osmotic angular motion which tries to restore the mean orientation i.e. § = 0 or
0 = z respectively. The current velocity takes its smallest value for the mean direction
and grows indefinitely while passing to less probable directions. Moreover (L) = +#/2 k
refers to 4-¢, i.e. to clok-wise or anti-clock-wise ¢ rotations about k respectively, thus
showing a clear affinity with the standard understanding of the spin-up (down) projec-
tions in the & direction which are intuitively related to the ¢ precession.

4.2. Homogeneous magnetic field effects

Let J¢ denote the homogeneous magnetic field. We shall modify the equation (4.2) by
adding theinteraction term (2u/#) ¥ M to the Hamiltonian. Since N commutes with M it
is obvious that the action of (2u/h) H#M on ¥ 2(SO(?;)) leaves invariant the two-dimen-
sional eigenspaces of N, corresponding to 4-%/2 respectively. _

In our notation e,(6, ¢, p) and e,(0, @, y) belong to the —#/2 subspace while e,(6, @, ),
es(0, @, ) to the %/2 subspace of the Ny decomposition of f2(80(3)). Notice that Mye,
= (k]2) €1, Myey = —(h/2) e5, Myey = (h/2) ey, 17_'_1334 = —(h/2) e,.

We can thus investigate the action of (2u/h) #M in each of the invariant subspaces
separately, which is most transparent if to look at the matrix form of the equation in-
volved. _ - :

Although the matrix elementsof M in the {e;} basis can be computed explicitly by de-
parting from the definitions (4.6), a simpler route may here be adopted.

We denote |1) = e, |2) = ¢, and observe that

; . ho(1 0 ,
My = 105 = 16100, 10 = 5 (oY) )
and analogously for e, and e,.

By recalling the standard knowledge about effects of rotations in the two-dimensional

space, we realise that an arbitrary vector _5? s |:7?’| = J€ can be obtained from the vector
(0, 0, #) by an appropriate rotation. Let 6, 7, i be the corresponding Euler angles. Then

H's = U¥o,U*, U=UQ@,7,p) C (4.18)

with U given in Section 2. Hence the two-dimensional matrix # M is given in terms
of Pauli matrices

HM = g H (4.19)

both in the My = %/2 and M, = —h/2 subspaces of 72(S0(3)). The matrix form of the

equation

ih 0y ly) = H |y)

1 2u =
2y 28
2IM e 3 % M

(4.20)
H =

5*
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comes from

ly) = :‘ a k) —*IA«: (ih 0y) |k) = ﬁ‘: aH |ey) (4.21)
where

Y aH o) =Y a i) (@ HIj) (Gl k) =2 (.S Hlkak) [2). (4.22)

k ijk i k

Hence we arrive at

o)~ ;)
2

H = mcl —}—/13?3, I = ((1) (1))

(4.23)

The obvious ansatz

(Z:) = exp (—-;— mc%) X 1= (ii) (4.24)

reduces (4.24) to the Pauli equation in the spin space of Section 2. Let us consider the
special cases covered by equations of Section 3.

Case H = J(0,0, 1)
The solution of the Pauli equation is

1(t) = exp (—iot), 1) =0, o= ih g (4.25)

1
and reveals the time dependence related to the initial condition ( 0). Hence we have:

W(B; P Y, t) = exp [—% (TnC2 + ygf) t] : 9(0, P 1P) (426)

with e being either e, or e;. Consequently we have the previously discussed stationary
stochastic process related to

ih oW — —— B r=3 " (4.27)
=P =8 met + pk '
Case ¥ — J(1,0,0)
The situation becomes here more complicated. Since (3.7) applies, we get
a, = a4(t) = exp (—% mczt) cos wt
ay = ay(t) = exp (—iﬁ- mczt) (—1 sin wt) (4.28)
w = % H
so that the independent solutions of (4.23) read
Y = a,e; + ageq Y = a6y + agey (4.29)

i.e. we deal with a superpositions of stochastic spin states. Before proceeding further
we must make an interlude on the meaning of spinor rotations.
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4.3. Rotations in the stochastic spin space

Once the eigenvalue problem
- h
HMe; = aje; o= £ - (4.30)

is solved for 9 = J(0, 0, 1) i.e. # M, we know that

(R, 3, p) H) Me; = aje; (4.31)
is solved by the rotated basis system, where

(RH) M — #(RTM) = HUMU* ¢ = Ue; (4.32)
and the restriction of U to the linear span of ¢,, ¢, is given by

U=X1)Uuk] >Ulj) = X U% ) (4.33)
ik l

where U” is the transposed 2 x 2 rotation matrix with 8, 7, 7 instead of 0, ¢, y originally
employed.
The spinor rotation U” of the e,, ¢; basis is here accompanied by the SO(3) rotation

R'0,7,9) M = M’ (4.34)
of the momentum operator M, as given in the Cartesian coordinates. Since
M = (M, My, My) = M7 + Myj + M,k (4.35)

the formula (4.34) amounts to the R(8, 7, #) rotation of the 7, §, k frame relative to which

the stochastic process was constructed. The underlying rotatlon is i =Rt', 7' = Rj,
k' = Rk and affects the 7, ik dependent formulas (4.13).

Remark: The basis vectors €,, €, ¢, in (4.13) are given by
3, =3
. ; : (4.36)
€y = G,7T = (cos ¢, sin ¢, 0) = 7 cos ¢ + 7 sin ¢

where G, is the transposed @, rotation matrix [6]. The y rotation is performed about
the vector

¢, = G,7Gy"k = T sin O sin ¢ — 7 cos ¢ sin O + k cos 0. (4.37)

Variables 0, ¢, y refer to random angular deflections about the Cartesian vector k

The rotation R(, 7, ) transforms the 7, 7, k& basis into a new basis system 7', ', k' and
thus e.g. the expectation value (L) = (%/2) k is taken over to (LY = (h/2) k'. It however
tells us that the stochastic deflection values 0, ¢,y no longer refer to the vector k but are
defined relative to &'. We have

koo

.
(Ly = »+—Rbk=+—F (4.38)
79 2 2
where L B B -
k =(0,0,1) ——— Rk = k' = (sin ¢ sin 0, cos  sin 0, cos 0) (4.39)

R(B.7.9)
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which shows that k and £’ are identical with the spin state polarisation vectors of
Section 2. Let us however emphasise that in contrast to Section 2 we deal here with a
genuine stochastic average over all possible angular fluctuations about k& and k' respec-
tively, which attributes a clear probabilistic meaning to the otherwise doubtful average
(3).

By (4.33) we have

1 1
= _‘E (2 —e) = e Uley = (e1 + e3) = ¢

2

o1 (4.40)
o y2 \-1 1
which refers to the Euler angles
_ _ = _ 7
ey TEe ey
. . ~ ) (4.41)
k=(0,0,1) -k = RO, p) k= (—1,0,0).
We obtain here
. hoo h , hoo . h
=5 k> Dy = —57, Dy=—gb>(Dy =51 (4.42)

It tells us that the superposition of the two competing (opposite polarisations) stochastic
flows gives rise to the z-polarised stochastic flow.

Visualising interference in terms of competing stochastic alternatives [17] makes it a
priori possible to get an insight into what happens in the neutron interferometry experi-
ments [36, 37] designed to verify the quantum spin state superposition law. Compare e.g.
the general stochastic discussion of the neutron interference, given in Ref. [14]. Let us
now investigate a superposition

b .. 0
Y = cos Fé —tsinog (4.43)

which is apparently related to the SU(2) rotation matrix

7] .. b
COS? —@SIUE
U =0T = _ _ (4.44)
) si . cos -
PR %
i.e. to the Euler angles
0—>—0, y—>P=a, @¢>5=—na
o b .. b 4.45
e =cos e —isin_ e =y, (4.45)
] 0
Ue; = —isin za+ co8 o€ = Y.
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In the above the subscrlpts -+ indicate that we deal with 4-#/2 eigenvectors of UJM,U*
= (R¥) M = FH(RTM).
The expectation value of L in states y,, y_ respectively reads (L), = /2 k', (L)_
= —#/2 ]k so that

1 2 . _ _ .
U(O)= 5 = sup = Pup = (0, —sin b, cos ) = k’
—1 Sin‘g
_ (4.46)
—1 sini
0 2 - . = %
U (1) - g = Ydown —> Paown = (0, sin f, — cos 0) = —k'.
COS?
In particular setting § = = we have
1 EAWAL 0 AYA!
(o) = (53 (1) o () = (=13) o)
Y, = exp (_E n) €3 . Y. = exp (—? n) €y (4.47)

k' = (0,0, —1) k' =(0,0,1)

i.e. the polarlsatlon reversal, which is accompanied by the phase correction exp (—ix/2)
of the spin state.

The Euler angles 0, ¢, p of (6, ¢, p) refer to random rotations about the polarisa-
tion vector associated with . But thls vectoritself should be determined before in the
external (observer’s) reference frame.

By looking at Fig. 4—6 of Ref.[6] and its turned upside down version, we realise that

the (0, ¢, ) rotation defined relative to k.’ = —k = (0, 0, —1) coincides with the
deflection
¢ =¢p+=n, O=a—0 ¢ =—yp (4.48)

defined relative to k_" = .
Accounting for the periodicity of the angular wave functions we obtain

(0, ¢, y') = e‘(p( 71) e, @,y

(4.49)
63(6’, ‘Pl’ 1/”I) — ( _2— TL’) 84(0 2
a8, ¢ ) = exp( 3”) ex(0, 9> 9)

(4.50)
0, . v) = exp (— - 7) 0 v
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Hence by (4.47) we get
i ’ ’ ’
(UrrTel) 0, @, y) = exp (_'— n) (0, @, ) = e(0', 9", y')

2
. (4.51)
7
(UnTea) (6: P, Y) = FXP (_5 n) e, (0, P, p) = e(0, 'plx 1/),) .
The 2x rotation leads to
(Uérzel) (6: ‘P; 'P) o _61(01 9’7: 1/’) - 32(0', 97', w’ + .7!) (4 52)
(U5:e5) (0, @, w) = —e3(0, 9, p) = eg(0', ¢, v + )
while the 3z rotation implies
3
(Ug‘:tel) (01 ¢7 ‘/’) — exp (-2_ ﬂ) 63(0, ‘P; 'P) == e4(n + B, (P; —W + TE)
(4.53)

(U3:83) (0, @, y) = exp (% n) el g, p) = e + 0,9, —yp + 7).

The above formulas manifestly disclose a physical meaning of phase factors. Namely
once we choose the k axis of the frame of reference to coincide with the polarisation of
the stochastic flow e,(6, ¢, ), each subsequent U, rotation produces a new stochastic
flow, which is different from all preceding ones, unless the 4z rotation is finally made.
All randomly accessible states of rotation are now determined relative to the initially
chosen vector k so that:

e (0, p, p) ey —0,9 + n, —p) e —0,¢ + 7, —y + 7)

T* 64(7t + 07 P —y + TE) 7+ el(0’ P> W) (454)

and analogously (interchange 2 <> 4 subscripts in the above) for ¢,.

4.4. Non-stationary diffusions

Let us finally come back to the time dependent problem with

Uty = U@)* = (

cos wt —1 sin wt
—1 sin wt cos wt

(4.55)
which implements the precession of the polarisation vector
Poy(t) = (0, — sin 20t, cos 2wt) (4.56)

about the 7 axes with the frequency 2.
The corresponding rotation matrix R(t) reads
0 — —2wt, Y —>m, Q> —x
1 0 0
R(t) =10 cos2wt —sin 2wt |. (4.57)
0  sin 2wt cos 2wt



Fortschr. Phys. 88 (1990) 6 465

The stochastic motion in the presence of the H = (1, 0, 0) homogeneous magnetic
field is no longer stationary. To describe it in terms of the stochastic differential equa-
tion, we must account not only for the random fluctuations about the mean direction
but also for the rotation of the reference frame 7, 7, k i.e. the mean direction itself.
Since the infinitesimal rotation coming from (4.57) refers [6] to the angular velocity

2
B = (—20, 0, 0) = _Tﬂ (9,0, 0) (4.58)

we arrive at the apparent generalisation of (4.58)

2 s=
By — — T/4 % (4.59)

so that the resulting stochastic differential equation reads
dii(t) = 7it) X Do dt + 7i(t) x dD(3i(t), ) (4.60)

with d@(t) given previously, but now relative to the time dependent frame with 7 = %(¢),
7=7t), k= k), &t) = R(t) €. Consequently in the presence of the homogeneous magnetic
field we deal (as expected) with a classical precession executed with the angular velocity
@ on which random fluctuations are superimposed.

5. Stochastic aspects of the Stern-Gerlach experiment

Letting neutral particles with spin pass through the magnetically inhomogeneous area
is the standard way to detect the polarisation (i.e. orientability) features of the coherent
particle beam [48 —50]. Albeit satisfactory with respect to predicting experimental out-
comes, the theoretical analysis of the Stern-Gerlach experiment employs the impulsive
approximation to describe the splitting of the beam in the k-direction [38, 48, 54, 16, 4,
55] and includes an assumption (usually hidden, while explicit in [54]) that non-zero
forces exerted by the magnetic field in the 7 and 7 directions are canceled on the average
due to the large homogeneous z-component of the field. As a consequence one entirely
disregards the details of what happens in the inhomogeneity volume.

From the stochastic point of view of Section 4 it is rather crucial to provide the analysis
of this disregarded problem.

To answer what probabilistically happens in the spin measurement, we must have in
hands a detailed solution of the Stern-Gerlach propagation problem. It appears that [57]
is the only realistic attempt in this direction, while still incomplete with respect to our
needs, since the center-of-mass wave function is given only and the initial wave packet
is assumed to be so sharply peaked that the Dirac delta approximation is possible, which
is far from the experimental situation.

We intend to analyze effects purely due to the magnetic field inhomogeneity, so the
large homogeneous component will not be introduced at all.

Following the idea of [57] let us consider the Heisenberg picture dynamics generated
by the Pauli Hamiltonian

H Ll W
= _ﬁ"/ + uHs

H = HF) =B-(—=x,0,z2) —divF = 0.
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The dynamical variables of the problem obey

s il P
ip= ] =

6; = %— [H, 0;]- = —u(d X (72:), — G, = iuh-Ba,,z
. 4 .
Oy = —!f_l B(o,z + 0. x) 0, = —% BGIII : . ; (52)

k .
— p, = —uBo
or; Y2 ol

Pi=7[H,pi]—:,u4:: O

py=0 p. = uBo,.

‘ollowing theimpulsive approximation idea (neutrons feel the magnetic shock along the
relatively short time in their overall motion through the experimental arrangement) we
select the leading contribution to the Taylor series

) 2 . 2
FO) = 7(0) + #(0) + 5 H(O) + - ~FO) 4 - O) + 5 p0). (B3

Denoting by 7(t) the 2% 2 matrix operator, not to confuse it with the configuration
variable, we get

t =
&) ~ x + - Pz — z_m/‘BUr

t S
O~y + —py ' (5.4)

12
o yBa'g

t
é(t)~2+;nff’2+2—

so that a passage from the Heisenberg to the Schrédinger picture can be accomplished
by invoking
Y(F, t) = fd-r’G(?, t;7,0) P, 0)

Aty = exp <-;? Ht) A(0) exp (—ih Ht) (5.5)

)
[y, 1) = exp (—;Ht) [, 0)
ie.
F(—t) G 1;7,0) = FG(F, 157, 0) (5.6)

with 7(t) given by (5.4).
This equation is accompanied by

P(—t) GG, t; 7,0) = P'G(F t;7,0)
Po(—t) ~ —p, + tuBo, p= —ihV (5.7)
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bf—t) ~—=p, P'= —ikV’
p(—1) ~ —p; + tuBo,
and the solution of (5.5), (5.7) which is consistent with the initial condition
G 57, 0) 5> O(F —F) - (5.8)
reads

3/2 m 2 2
G, t;7,0) = (7%) exp {z_m [(r —a + En—{#BG’) + (y —y')?

‘ 2 : .
-+ (z — 2z — %MBO'Z) J -+ %[—xt,uBa, + zt,uBa,]}. i (.9)

In the short passage time approximation of ours it can be furthermore given in the form

G O m 3/2 ) 2 ’
(7, ) ~ ( flt) exp [th (F —7") :| er [Uz(" — oz + 2')]
(5.10)
where for short times the familiar free propagator
m \3/2 im
T L s
K(r,t;7,0) = (zht) exp [th (F—7 )} (5.11)

can be literally viewed as an approximate expression for the Dirac delta functional.
Consequently the propagator reads

Lo m \3/2 im o, iuBt

7, 0) ~ | — Xp | (7 — 72| ex 2 — O, 12

G(r,t; 7', 0) (zht) exp [2ht (r r)]cxp a (0.2 — o,) (5.12)
and its action on the initial spinor wave function
1 ) X

Y(F. 0 d2lexp —B(F — @
P(T, ) ( 12)3/26 p{ 2_]2( q)}e\p h p(r q) (ﬂ)
#(7.0) = v(7,0) ()

is given by

Y(r, t) = (7, 0) exp z.‘uft'(o:: — 0,%) (;)

5 (5.14)
- ‘ P . - vt p
P (7, 0) =y (x, Yy ——t,z; O) exp (__h o 1).

It is quite remarkable that the net effect of the above propagation, although implemented
by the pure spinor rotation exp (iut/h J5) is equivalent to the accelerated motion of
the involved wave packets. In fact the up and down components of the spinor (;) ac-

quire phase factors whose exponents contribute to the mean wave packet momenta

P — P+ = (—uBt, p, +uBt). (5.15)



468 P. GarBaczewskl, Neutral Spin 1/2 Particles

Armed with the analysis of Section 4, we can address the stochastic diffusions related
to the short time Stern-Gerlach propagation.

The uniform motion of the Gaussian wave packet was analysed from the stochastic
viewpoint by GUERRA [60], see also [17, 23, 61, 62]. In case of the translational motion
of the wave packet centroid in the y-direction, the stochastic differential equation for the
random variable X (f) with vatues in R reads:

1

dX(t) = b(X(t), 1) dt + (%) ; AW (1) (5.16)

where dW (t) is the Wiener noise in R3, while b comes from (7, 0) via standard defini-
tions [17] of the current and osmotic velocities:

= h h2 - -

U = = Vin|y| = —7712[7 —q®)]

I P

qt) = (O,q —;Lt,O) (5.17)
b ——Vargy =L =L0,1,0

so that

= (X(t), Y(t) —q + % ‘ Z(t)) + % 0, 1, 0)

mA?
___h (2N, P
= — Xy + (0, — % (q - e) + 0). (5.18)

This translational stochastic process in R? is accompanied by the stochastic spin pro-
. - - = 1
cess. By the arguments of Section 4, the Pauli spinor (;) = U0, ¢, ) ( 0) represents

the superposition (xe; +- feg) (0, ¢, p) of stationary diffusion processes.

The polarisation of this new process is given by (2/k) (L) = R(#, ¢, §) k.

Particles passing the Stern-Gerlach magnet can be visualised to draw stochastic
trajectories in R%. Each sample path [63] of the process X (f) represents a possible variant
of the spatial motion to be executed in R® by a point particle, provided it follows the
Schrodinger-Pauli evolution pattern.

However the spinor rotation

exp (z %t&’f‘) (;;) = {cos “ l:ﬂ t + io |;| sin (% ]JZ| t)} (;) (5.19)

couples the spin and spatial motions, and for the proper description of the stochasticity
involved we need a pair of no longer independent random variables:

(X (), 5(t)) — {X(t), 5(X(t), t)} . (5.20)

We observe that (5.19) represents a stochastic spin process associated with the point
particle, which is instantaneously at rest at the location 7 € R®. Then #%(t) is attached to
the point 7 and is sensitive to the magnetic field in (about) this point.
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By arguments of Section 4, the rotation of the local (at7) reference frame 7, 7,k is
related to the F-dependent angular velocity

- 2u = . 2uB
o(F) = - H(F) =~

3 (=2,0,2). (5.21)

Since 7 is the value to be taken by the spatial random variable X (f), we arrive at the
following stochastic differential equation describing the spatially dependent angular
random motion

di(t) = da(X(t), t)
= a(X (1), t) x ®(X(t) dt + #(X (1), t) x dD7HX (@), 1), ). (5.22)

It apparently describes random spatial trajectories, at whose each point the randomly
achieved spin direction is modified by the magnetic field about (at) this point. At each
random location 7 the random particle orientation is given by (7, 0, ¢, y).

The short time propagation regime adopted, if combined with the not-too-large A
assumption and § = (0,¢, 0) data, justifies the following approximation of the solution
of the Pauli equation we have derived

W(F, t) = p,(7, 0) exp (z %t ajé) ( "‘)

g
w|JH|t 2B . u|H|t
. [COST«szsmT o
_‘PlTy cgﬂlj&'t—.ZB ‘i ,uljf.'lt ﬂ
0s 7 it sin—
. . aB ||t (a)
— (7, 0) |t ——sin
aexpl—ﬁ’lthz
~ (7, 0) ‘ (5.23)

f exp (_z_;:_ Btz)

Let the Stern-Gerlach evolution be confined to the time interval ¢ € [0, T and let for
times ¢ > T the free propagation pattern be followed. At ¢t = 0 we had

W(7, 0) = y(7, 0) (xe; + fey) (6, @, ) (5.24)

which at time ¢t = 7' got transformed into
. " i
W, ) = an(F, 0) exp (% Bz) e,(0, 9, v)

4005, 0 exp (% Bs) 0,9, ). (5.25)

It amounts to the modification ¢ — ¢ + 2u/k BTz of the Euler phase ¢ of the stochastic
spin process. However the resulting phase factor can be as well absorbed in the
(then redefined) spatial wave packet y,(¥, 0), which affects (acceleration) the value




470 P. GarBaczewskl, Neutral Spin 1/2 Particles

of the wave packet mean momentum at the initial time instant ¢ = 7' of the free evo-
lution.

The free spatial propagator sends the centroid of the Gaussian wave packet to the new
location

T—>t:>q’:(0q——T 0)—+(()1——t:F BT(t — )):qi(t)
(5.26)

modifying at the same time both the time dependent phase factor and the wave packet
shape (spreading effects).

Processes related to e, (0, ¢, ) and e;(0, @, y) follow the free spin evolution pattern of
Section 4. However although the spatial and orientational randomness are not coupled,
the joint description of both for ¢ > 7" i.e. well beyond the Stern-Gerlach magnet, is
provided by the superposition

V(F, t) = ap (7, t) ey(0, @, w, t) + By (7, t) es(0, @, 9, t) (5.27)

hence still an intricate relationship of both persists. The subscript -+ refers to the mean
momenta p. of the wave packets.

Remark: Formulas (5.24)—(5.27) with the accuracy up to notation adjustments are
precisely the starting point of the fuzzy spin space analysis of Ref. [15]. The unsharpness
(fuzzy-ness) of any spin measurement is inherently rooted in the stochastic phenomena
involved. Thus e.g. in terms of stochastic trajectories the expression

PA = |W(F, 0, ¢, p, )2 AVAQ (5.28)

is the probability that the fraction of particles which at time ¢ reach the small spatia
volume AV about 7, has their stochastic spins concentrated in the angular volume AQ
about the (0, ¢, y) Eulerlocation of the punctured Liouville sphere. In general both the
polarlsatlon k and —k processes do non- trivially contribute to (5.28), unless we are
interested in the not too large surrounding of either the north 6 = 0 or the south § = =
pole of the sphere.

Coming back to the formula (5.27) let. wus stress that it is a superposition of two pro-
cesses, where each constituent displays an independence of spatial and angular motion.
By invoking spatial and angular formulas for the forward drift, we associate two inde-
pendent stochastic equations with each term of the superposition. Since both of them
have the form

V; = exp (R; + iS;) k=4+=1,2
(5.29)
YV=exp(R+iS)=¥, + ¥_ ‘

the osmotic 4 (respectively @,) and drift @ (respectively @,) velocities of the super-
position of the stochastic flows are given in terms of these characterising constituent
flows

CL o sinh (Ry — Ry) (1, — diy) — sin (S, — Sy) (3 — 7y)
"3 (@ + ) + cosh (R, — R,) -+ cos (S; — S,)

(5.30)
oy sinh (B, — Ry) (8, — Ba) + sin (S; — Sa) (@, — iiy)
v (1 + %) + cosh (R, — R,) -+ cos (S, — S,)
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which implies that we arrive at two stochastic differential equations whose drifts dis-
play the coupling of spatial and angular degrees of freedom

dX (1) = B(X (1), 7(t), ) dt + (%)” AW (1)

5.31
dii(t) = 7i(t) x dB(i(t), X (1), t). G5

“Appendix: Rudiments of the stochastic mechanies

Fenyes-Nelson’sstochastic mechanics is one of very few attempts to reconcile the indi-
vidual particle trajectory notion with the wave (Schrodinger) theory of quantum pheno-
mena. To a given solution of the Schrodinger equation one can in principle attribute a
stochastic diffusion process satisfying the Newton second law in the mean. The corre-
sponding stochastic differential equation describes a propagation of a point. particle
through a non-dissipative random medium. Sample paths of the process can be approxi-
mately identified with the realistic configuration space paths of (perhaps) physical par-
ticles.
For a quantum particle in the conservative force field we have

f2
ih (@, 1) = =5 Ay(@, ) + V@) p(3, 1 (A1)
which implies the continuity equation for g = |yp|2
fo = —div]  T=35- Gy —pVp). (A2)

In case of nowhere zero y (locally at least, there are existence proofs for singular diffusion)
upon a standard substitution y = exp (R - iS) we get

&

_ h h B ‘ .
@tg = le {—E VS . Q} = —.% JQ == le Qb (A 3)
where

o=exp2R b =i+7, a:ﬁm, 5:%173, by =0 — i

m
1 (A 4)
and one more equation
h .
o = ~ o Ao — div oby (A 5)

is obeyed by . It is identifiable ast he backward Fokker-Planck equation, while (A 3)
is the forward one.

In the theory of stochastic processes such equations are known to determine the time
development of the respectively forward and backward transition probability densities
for the diffusion process. Setting » = #/2m, b = k/m V(R + S) in the forward case, we
have

op(d, 0, %, t) = div, wV,p(7, 0, Z,t) — b(Z, t) p(§, 0, Z, 1)} (A 6)

According to the rules of the Ito stochastic calculus, one can uniquely associate (A 6)
with the stochastic differential equation

d(t) = b(X(t), t) + V2 dW (1) (A7)
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where dW(t) represents the normalised Wiener noise. X (t) takes values in R3 as a conti-
nuous function of time, and with time passing draws a stochastic trajectory in the con-
figuration space. Given gy(%) = o(Z,0) and p(7, 0, Z, t) solving (A 6). Apparently
f Ay (7,0, Z, t) go()) provides a solution of (A 6) with the initial condition 00(Z), hence
by the uniqueness theorem for the Kolmogorov equation it equals o(Z, t).

The normalisation f d?%o(Z,t)-= 1 is preserved by virtue of f @Bz p,0,%,t) = 1.
Let us emphasize that the knowledge of p(7, 0, Z, t) does not determine o(Z, t) unless
00(%) 1s specified. Consequently, given (A 3) it is rather natural to demand the validity
of this equation not only for ¢(Z,t) but also for the transition probability densities
(¥, 0, Z, t) which automatically associates (A 7) with (A 1).

As is well known the Schrédinger equation can be equivalently rewritten as a coupled
Jystem of equations, one of which is (A 3), while another has the familiar Hamilton-
sacobi form

~

88 = 2 (PR — |PS[* + VR) —

om e (A 8)

Let us define the conditional expectation value for the stochastic process X (¢) solving
(A7) =
E[{(X®))] = E[{(X@)) | X(t) = 3] = [dFp(, 1,7, 0) fG) ¢ =t. (A9)

In terms of (A 9) the mean forward and backward derivatives D,, D_ of the process can
be introduced

(D) (X(@), 1) = lim , {ié% [F(X(e £ 40, ¢ + 41) — (X @), t)]}

- (a, + 8.V + %4) f(X), t) (A 10)

such that
D.X(t)y="5, =%

D.X(t) =b_ = b, (A 11)

and there holds
5 (D.D-+ DD = 2D + Db,) (X(),1)
= hV {a,s - %L-[]VRP — V8|2 + VR]} (X(),t). (A12)
By equating (which is a restriction on the process)

% (D.D. 4+ D_D)X(t)y = —VV (A 13)
the second Newton law of motion is obeyed in the stochastic mean. Apparently we

deal here with the gradient form of (A 9). Since the osmotic 4 and current # velocities
are gradients, it is convenient to rewrite (A 3) and (A 8) in terms of them only. Then

3 o ho -
0l = ~%m A — V(vir)

(A 14)
1

5 Vv

Il

1
a0 V(i) — 5 V@) —

h 1
— A 4 =
2m m
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may be considered as the starting point for the stochastic analysis, once the initial
velocity fields #(Z, t,), #(Z, t,) are chosen and the Cauchy problem (A 14) is solvable.

Equations (A 3), (A 8) provide us merely with another form of (A 1), while the equi-
valence of (A 14) with (A 7), (A 13)is more intricate. On the other hand, by taking the
gradients of (A 3), (A 8) we recover (A 14), hence on the mathematical (at least) level a
manifest link exists between Schrédinger wave functions and random (diffusive) mo-
tions of point particles.

The magjor problem of stochastic mechanics is then to reveal to which extent wave functions
are derivable on purely probabilistic (diffusion processes) grounds.

Apparently is amounts to recovering the potentials upon an assumption that #(, ¢),
9(Z, t) solving (A 14) are gradient fields. Let 4, % solve (A 14) with the initial data (%)
= ii(Z, ty), Py(t). By introducing b = i + % we can pass to the stochastic differential
equation (A 7) which in turn implies (A 6). Accordingly o(z, ¢) is determined by the choice
of gy(¥). Assuming that () is the gradient field, we can locally reproduce the potential
with the accuracy up to the additive constant (e.g. the Poincaré lemma). The normali-
zation condition f d’Zo(Z, ty)) = 1, exp 2R, = p, removes the arbitrariness, hence ()
determines o (¥) and by (A 6) o(Z, t).

Having ¢(Z, t) established, we are finally left with the equation (A 13) whose inte-
gration amounts to solving the Cauchy problem

oS +HWVS, 2,t) =0
F(Z, 1) = F4(Z), V(@) = mivy(%) (A 15)

& = hS
with

N p?
H(p, 5’:’ t) o % + U(i':) t)
—— (A 16)
U@, 6) = V@ 1) — 5 #
Indeed, if we have a solution F(Z, t) of (A 15) then V.#(Z, t) solves (A 13) hence (A 14).
By the uniqueness argument for solutions of the Cauchy problem, VI (E, t) = mi(, t)
provides a solution of (A 14) with %,(Z) = 1/m V£,(z). The only non-uniqueness per-
tains to the initial data Vo(Z) = mi(Z) since in the contractible spatial area ¥,(Z)
determines the corresponding potential up to the additive constant.

To see how this arbitrariness can be removed, let us consider the absolute expectation
value of (A 15). Then (,f) = —(H) where (integrate by parts)

(H) = f &7 [% (2 — u2) - V(3 1) :% div aJ o(E, 1)
- f &3z [% (@2 + 5% + V(z, t)] o(Z, 1) (A 17)

and the assumption of the localizability (e.g. (H)< o) of the total (mean) energy of the

diffusion process is necessary to have (A 15) uniquely solved on the basis of (A 14). The

term fdsi’m/2('ii2 -+ %) o(%, t) is known as the kinetic energy of the diffusion process.
By the continuity equation we have

04Ty = [ dBH(240) F + (8F) = m(B) + (2,) (A 18)

6 Fortschr. Phys. 38 (1990) 6
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hence (A 15) implies
o) = m(i®) — (H) (A 19)

which admits a unique solution () () for given initial data (F) (t;) = (Fy).
By making the restriction

(o) =0 (A 20)

we have a guarantee that (f) (¢) is determined in terms of 4, ¥ only

&) ) = | [mie?) — () de. (a21)

to
Given an arbitrary integral J'(Z, t), (") == 0 of (A 15). Then
F@ 1) = (@ 1) — () (A 22)

obeys both (A 20) and (A 15): such Schréodinger wave functions are in a one-to-one corre-
spondence with the diffusion process (A7), (A 13).
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