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Summary

We establish a manifest connection between the classical and quantized versions of the Kepler
problem in case of scattering states. The affinity to the four-oscillator system allows to deduce the
stochastic description of the Kepler problem, which in the leading order of the tree (semi-classical)
approximation is given in terms of three independent Markov processes the latter being driven by
the classical Kepler motion.

1. Motivation

In the previous paper [1] a possibility has been examined of incorporating the quantum
Kepler problem in the framework of the stochastic mechanics [2—4]. The discrete (bound
state) spectrum version of the problem was considered and its affinity to the four-os-
c¢illator model made explicit, both on the quantum and classical levels of theory. The
classical-quantum relationship was recovered through computing coherent state ex-
pectation values of operator expressions: the quantized Kepler problem was represented
in the Hilbert space of the four-oscillator system. The case of scattering states was left
aside in [1] and it is the main purpose of the present investigation to associate stochastic
processes to continuous spectrum variant of the quantum Kepler problem.
To exemplify the stochastic mechanics strategy [2, 3], les us consider a quantum
mecharical problem, where
H h? 1+ 7 1.1
=~EmeT Pty
is the Hamiltonian operator acting on the wave function y = y(x, #):

p = o2 exp (iS/h). (1.2
Then [4]

o/

[ip(;v) (Hy) (x) de = JH (0, S) = f (% mv? % mu® + V) () o(x) dx  (1.3)
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v =, t) = VSim
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-

and the Ha,milton-Jacobi-Mandelung equation

(78)? A
atS“LW‘LV‘%{'QlT:O (1.5)

holds true together with
0y = —V(ov). (1.ba)

According to [4] ¢ and 8 can be viewed as the phase-space variables with the Poisson
bracket

0A OB 0A 6B
“ = | sy 5~ o ) o

so that

fo(x), S(z')) = 8 — ')

oH
o
%S = {S(z, t), K} = — A

Since, with respect to (1.6), there holds:

1
{yla), P} = o(w — o) =
(1.8)
(@), w(@)} = 0 = (F(x), p(a')}
we arrive at conclusion that
1 65¢ 1
_ Flo— s 1.9
Oy = {y, I} 7 o) — ik (Hy) (2) (1.9)
Le. p = y(x, t) solves the Schrodinger equation.
Furthermore, for all obhservables which can be written in the form
(dy) (@) = [ Az, 2') y(a') do’ i
Ao 8) = [[ 7) A(z, 2') pia) de da
there holds
1 :
v B =5 [ dep) (14, B ) o L

where A4 = A(, S).
If to specialize this discussion to the harmonic oscillator, the stochastic background
of the model is best seen if ¥'s are the coherent states [3]:

2 1
ik By — “217; Oty + 5 moaty (1.12)
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(¢ — qu®)? + 3 2Pa(®)

¥(®, t) = (2m0)" 1/ exp [“z;

— g Pl gal) —i g t]

(1.12)
b
T 2mo
since then
1
o(x, t) = (2me) 12 exp [—E& (x — qc](t))z]
(1.13)

1 1
S(x: t) = xpa(t) — Epcl(t) ga(t) — _2— hot

and the coherent state expectation value of the cc..liguration operator ¢ equals g.(t)
which together with p,(¢) determine the classical harmonic motion, while g.; = f dzxo(x),
Pa = f o(x) VS(z) dz. The generalization of this harmonic oscillator discussion to the
four-oscillator case is apparent and was exploited in [1] for the construction of the sto-
chastic mechanics of the (discrete spectrum) quantized Kepler problem in terms of the
four-oscillator stochastic processes which are subject to constraints. By stochastic me-
chanics we mean the validity of formulas of the type (1.6), (1.7) and for the Kepler
problem the constrained classical four-oscillator motion determines the appropriate
densities and phases of the stochastic process. This point is discussed in more detail in
Section 4 of the present paper.

2. Passagezﬂ the Classical Kepler Problem in Case of the Continuous Spectrum

Let us consider the reduced Hamiltonian of the Coulomb problem

H= ——V?— —, 2.1
2m r (1)

The Laplace-Runge-Pauli operator M obeys

2H

M2 — (Ze2)2 —
(Ze) = =

(L2 + 1% (2.2)
and we know that

(L2, M2 = 0 = [H, M]

(2.3)
L-M=M-L.

In the case of the continuous spectral problem for (2.1) following KiBLER and NEGADI
[5, 6] we define (notice that the operator H appears in the denominator)

B= (%)“2 M (2:4)
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so that equations (2.2) and (2.3) imply

L4+ B2 4 42 = — (ﬁ) (Ze2)2 (2.5)
L-B=B-FL (2.6)

The number of six operators (L,, L,, L,) and (B,, B,, B;) constitutes the Lie algebra of
the Lorentz group SO(3, 1)

[L]', Llc]— = iﬁe,-,,lL, ) [Lf’ Bk]— = ’”iﬁjle[ (2 7)
[Bj, By]l. = —ihejyL.. '
We shall introduce a particular (Jordan’s) bosonic representation of (2.7) given by

1
L, = ? (a‘A‘O']'a -+ b O'Jb) k

N

1=123 (2.8)

DO =

B; = - (a*0;06*T — a"Cojb) h

a, a; 0 —1
== 3 b d 5 o 5
i N B
0; — Pauli matrices
where the Fock representation of the CCR algebra with generators

[aka a‘j“]— = ak] s [, aj]— == [a/ls'+9 aj+] =0 (2'9)

where §, k = 1, 2, 3, 4, a;. |0) = 0, is in use.
Inserting (2.8) into (2.5) and (2.6) we arrive at the following operator identities
(@ ay + agta, — az'ay; — ay*a,)? — (a,"a," + a0y — aytagt — Aot3)*
2m (Ze?)?
PSS st cinsilt 2.10
H 72 (2.10)
(mtay + ay"ay — ag*ag — ag*ay) (a4 + a0y — aytagt — ajas) = 0. (2.11)

Since the two factors in (2.11) commute and the continuous spectrum arises if £ > O,r
we finally get

ata; + ayta, — asta; — afa, =0 (2.12)
2m(Ze?)? 1

H = 2.13

h? (artast + aay — aytast — aya4)? ( )

which is the scattering variant of the Kepler Hamiltonian in the boson realization: the

constraint equation (2.12) should be accounted for while solving the spectral problem
for H.

Let us introduce the new operators:

1 (24 \1/2
O =g (o) tert )
(2.14)

1 . . .
P,- =B (2hma)1/2 (a; — a;"), 7=1,2.3,4,
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in terms of which (2.12), (2.13) reads

1 2 %
h—w[ﬁ;ﬁ(Q12+Q22_Qs2_Q42) ‘,L‘2_1m‘(P12+P22“P32—P42)}:O
(2.15)
I — meéZe2)2 - = 1 . . (2.16)
[_2— (QIQ4 i QzQS) o ‘2? (P1P4 - pzps)]

To pass to the classical version of this quantum problem, we shall adopt the coherent
state technique, which was previously used in the discrete (bound states) spectral
variant of the Kepler problem [1, 7]. The classical phase-space variables and the classi-
cal Hamiltonian are supposed to arise via taking the coherent state expectation values of
operator quantities in the tree approximation.

A 1/2

Q= (a1 0y10) = (31 ;W) =5 (ﬁ) ) (2.17a)

mam
1
P, = (o] 1Py |0} = (] B ey = 5 (2hmw)? (o5 — &j)
He={(o|:H:|x), j=1,2,34. (2.17)

Here, the tree approximation amounts to the normal ordering : . : prescription for all
operators, while |x) is the coherent four-oscillator state

1 4 4

|x) = exp (_E P [ocl-|2) exp (S o *) |0) (2.18a)
=1 i=1

a; |0) =0 i=1,2,3,4 (2.18b)

a; |x) = x; |x). (2.18¢)

H is to be viewed as a formal power series

2m(Ze?)? 1
H = -
h* U+ [(aas™ + aaq — @y ag" — asay)® — 1]
2m(Ze?)? o
= % (1 — [ ey + aay — ag"agt — axa3)? — 1]
+ (a1 ast + aay — aytagm — agm5)® — 1P
— (@t @yt + @@y — aytagt — ama)? — 1P 4 ... (2.19)

so that the normal ordering can be easily effected. Thus

e — 2m(Ze?)? 1

h? (3% 4 xqoeg — Koy — xy3)?

_ m(Ze?)? o* 1

— : (2.20)
2 2 1 2
[mT‘“ (@@ — Qo) — 5~ (PrPu + PQP:,)]
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and additionally, from (2.15) we get

mw? 1
o (@2 + &% — Q2 — Q2) + oy (PR 4B — P — P# =0, (2.21)
After the canonical transformation
1 1
P1':T—(P1+P4) Ql’:_(Ql"*_Qtl)
V2 V2
1 1
P2’:_—(P2—P3) Qz,:_(Qz—Qs)
2 2
V V—l i (2.22a)
T F o1
Py = (@ 40y O = s Pat Py
= = Ly
Pl =@ 0) U= o B — P
{Pi’a le}Q,P = {Q1,7 Qj’}Q,P =0 (222b)

{Qili P;i’}O.P =3 6ij: 7:, j = 1: 2, 3’ 4,

({;}o.r means the Poisson bracket) we pass to the following expression for the Hamil-

tonian (2.20)
H® = 2mw*(Ze?)? !

1 AP"Z 1 24 ,22'
(%2 gt 2l )

i=1

(2.23)

The constraint (2.21) becomes transformed to the form
APy — QP + Q.'Py — @'Py = 0. (2.24)

(2.23) does not resemble the classical Kepler Hamiltonian (unlike to the discrete spec-
trum problem of Ref. [1]). However at this point we can apply the Kustaanheimo-Stiefel
transformation. We introduce [6] the matrix (we neglect primes)

@ —Q @ —Q,
A = QZ Ql Qd Q3 (2_25)
- Q Q@ —Q
—@ —Q @ @
and the new phase-space variables (215 925 93) (P1; P2, P3) &S
Vb (3
©)_ 4@ (2.26a)
qs Qs
0 Q4
I P,
Pa) _ L) (2.26b)

D3 2r Py
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where

r=0"+ Q%+ @+ Q2 = (1% + g2 + gs)12. (2.26¢)

The new variables are the canonical ones (see Appendix A), because of
{9 4lqp =0
{pis Pido.p ~ 0 i,j=1,2,34 ' (2.27)
{¢i, Pito.p = 0ij-

Here the second bracket is equated to zero on the surface of constraints (therefore we

use ~ instead of the equality sign =). Uponadmitting that the classical energy £ = HC

= 1/8mw?, the Hamiltonian (2.23) acquires now the form :
1 Ze?

HC — _—_ pe

5= : (2.28)

Hence we arrive at the classical Kepler Hamiltonian.

3. Passage to the Classical Equation of Motion

In case of the discrete (bound state) spectrum, the Kepler problem was represented in
the Hilbert space of the (attractive) harmonic oscillator. Presently, instead of bound
states, the scattering states are of interest for us. The affinity to the harmonic oscillator
can be recovered now as well, but the repulsive potential should replace the previous
attractive one. Let us denote

4
Ho’ = ﬁwz aﬁai + }— (3.1&)
=1 2
m(Ze?)? 1
4 T (S— .lb
" h* - (artay + ayta, + 1)2 + (as*as + a,ta, + 1) (3-1b)
1 4
H,= T ko 3 (aa; + a;ta;t) (Appendix C) (3.2a)
i=1
_ 2m(Ze%)? 1
= h? (a1 ay" + 0,04 — astagt — a,a,)? ekl
where H, is the Hamiltonian for the repulsive harmonic problem. We have
[Hy, H. =0, [Hy,H]. =0 (3.3)

but the H,, H pair does not commute with the Hy, H one.
In quantum theory, the Heisenberg equation

aF,
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provides us with the time development of operators. After accounting for (see Appen-
dix B)

1. o
[H,a]. = 7 ay,"H 4 WafYH
105 1
[H,a,]. = —Taa*li — ¥ as* YH
(3.5a)
1 1
[H, a;]_ = —YafH — W%J’YH
1 1
[H, a,]. = ?aﬁH + e a,*YH
] 1
[H,a;t] = =% a,H — Ve a, YH
e 1 1
[H, a,"] :7“3[1 - W%YH
(3.5b)
1 1
[H, a3t]_ = b a,H |- Ve a, YH
h 1 1
[H, a,t]_ = ~?a1H — ﬁa,YH
where
Y =atas + @Ay — Gy ayt — aya, (3.5¢)
and denoting by F the classical analogue of the operator £
F = (a] :F |o) (3.6)
we arrive at the following equations of motion (see Appendix B)
; A i )
@ = (x| ar e = 7 (M[H, Q4]: o) = P,
b ) i (3.7a)
IR AN : o D = '
Py = (af : =+ o) 7 ([, Pyl o 200 b=1,82314

¢ Mmw?(Ze?)? 1
He = B T— [mz\z (3.7b)

1
G (@0 — Q) — 5= (P, £ipy|

where :[H, Q]_: means first computing the commutator and next taking the normal
ordered form of the resulting expression. Analogously we can proceed in- case of the
discrete spectrum (it supplements our previous consideration [1]):

1 1
[H';a,]. = X (a7 ay + ay'a; + 1) aH' + Yal(al+al + a*ay 4 1) B

1 1 ‘ ‘
[H',a,]. = bd (m*a; + ayta, + 1) a,H' | bd G(a ey + ayta, + HH
(3.8a)
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4 1 - } ’ l . L r
[H,a3]- = 5d (agtas + a,ta, + 1) asH' + X as(asTas + a, aq + 1) H

r 1 it r 1 4 ’
[H'a4]- = 83 (asas + astay + 1) aH" + b4 ay(astas + agta, + 1) H

(3.8a)
’ o 1 P = r 1 ! r
[H,a,"]. = X (a:7ay + ay™ay + 1) a,"H" — X—aﬁ(a,*avl + ayta, + 1) H
7 4 + 1 ! 4 1 - ’
[H,a,"]. = o (@@, + ayta, + 1) a,*H — < ayt (@ Fay + atay, + 1) H
(3.8b)
1 1
[H',a3] = = (astas + as*aq + 1) ag"H' — 5 ast(astas + astay + 1) H'
’ 1 F r 1 L r
[H' a4 = - (as*as + as"ay + 1) ay*H — bd ayH(astay + agta, + 1) H
where

X = (aa, + ay"a, + 1)* + (ag*as + ag*ay + 1) (3.8¢)

so that after computing the coherent state expectation values in the tree approximation,
we obtain (Appendix B):

. oH'c oH'®
O = 8Pk, k:—TQk; k=1,23,4 (393)
H'® = (x|:H': |&) = —mw?(Ze?)?
1
mo? N | 4 mw? 1 2’
Q2 ) + g (P Pf)] + [ @+ Q) + 5 (P + PR

(3.9b)

H'¢ is the classical Hamiltonian for the Kepler problem with E < 0 (see [1]), (3.7) from
which after taking the canonical transformation (2.22) we get (3.9b).

Remark

In the case of H, or H,’ we do not need the normal ordering (tree approximation) be-
cause of the simplicity of the model. The coherent state averages of Heisenberg equations
coincide with the Hamilton equations for classical variables (Appendix C).

4. Stochastic Mechanies of the Continuum Kepler Problem

We would like to construct a stochastic scheme for the Kepler problem following the
standard harmonic oscillator route (see [3]). In our case there is one difficulty. So far
we have analysed the classical-quantum relationship for the Kepler problem, where
Heisenberg operators are represented in the Hilbert space of the four-oscillator system.
Hence no time dependence of state vectors was involved. However, we must pass to the
Schrodinger picture, to fit with the stochastic mecharics idea of Nelson and Guerra:



and we shall discuss its role for the Kepler problem. A well known property of these states
Is that their time dependence |x, f) = exp (—i/h Hy't) can be transferred to the time
dependence of the labels: o, £ = () |a(t)), where 7(?) is a phase factor (exp (—iwt/2)
for a single harmonic oscillator), and «(f) is a solution of the classical equation of motion
e.g.

x(t) = (x, t| @ |«, t) = (o] el E tge—GilkyH,'t Joe) (4.1)

for the single harmonic oscillator variable.
Let us study the expression analogous to (4.1) in case of the Kepler problem

%j(t) 1= (x| eV Hlge=GIbYEL |y _ () ap(t) o). (4.2)
Notice that |x, ) = ¢-ti/bat |o) is the Schrédinger type evolution of the coherent state.

For the oscillator «j(t) obeys the classical equation of motion, which is not the case for
the Kepler problem, because of the tree approximation involved

&i(t) = ﬁl (*| [H, ag,] |y = ki(le H, ay]: |x) + contractions, (4.3)

Let us notice that according to Sect. 3 solution of the equation
. 7
8°() = 3 (|:[H, an: |a) ' (4.4)

is the classical one. By virtue of (4.3) we find that «;(t) is the tree approximation contri-
bution to «;(¢)

o(t) = () + ---. (4.5)

Now let us observe that if to formally replace the coherent state labels «; in |«) by a;(t)
where «;(¢) follows from (4.2) then we have

() = (x(t)] @; |a(t) = («] e Atg g-GIDEL |4 (4.6)

which provides us with a quantally implemented time development of the state label
i = ai(t), and thus makes it possible to take |(£)) as a starting point for the construction
of the (related) stochastic process despite of the fact that (x| a(t)y does not obey the
Schrédinger equation for the original Kepler problem. According to (4.5) we have

(@ | a(t)) = (@ | as(t)) + --- (4.7)

and (z | a%(t)) comes from the Schrédinger equation for the four-oscillator,

In below we shall confine our attention to the pure (z | a%(t)) contribution to (@ | a(t)),
which should be viewed as the tree approximation only.

We know that the four-oscillator coherent state reads

) = exp (_éiivj; I“ilz) f (@0)™ (og)" (oxg)™ (oxg)™

[’ILI nz na n4> (4.8)
N1,M9,03,M4=0 (nl' Ny ! ns! Ny !)1/2 : £
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" and in the coordinate representation it equals to

p() == (2 | )

maw

— x iRea-In +'1']/§11 . i—VERe :
= —exp a-Ima+i)2 —=Ima- 5 o) ¢,

2
/
b:(i>12
mm

where o = (o, oy, 003, &04), & = (@4, &y, @3, 4). If to insert o;(t) instead of the arbitrary
parameters «; we have (using the standard relations (2.17a))

(4.9)

p(x, 1) = (x| a’(t))
1 1 . .
= (2mo)t NP {—;;(x — QM) + %r . Pe(t) — ﬁi Q°(t) - pc(t)}’
(4.10)

Formally the state (4.10) is the same as the four-oscillator coherent state, but instead
of the oscillator phase-space variables ¢°, p° the classical phase-space variables for the
Kepler problem Q¢, P¢ (Q°(t), P(t) are the solutions of (3.7a)) are in use.

Following the oscillator pattern, we can in’ principle introduce four stochastic pro-
cesses with the density-phase variables defined according to

1 1
0i(x;, t) := (270)1/2- exp {—% (xj — Q].c(t))z}

(4.11)

1 1
8j{zs, ) :=a; - Pe(t) — = Q(t) - Pr(t) — — hw.
2 2

Because of constraints these variables are not independent. By virtue of (2.12) the
Heisenberg operators obey

W (8) O, (8) + ag() ay,(t) — ap,(t) ag,(t) — aj(t) ay, = 0 (4.12)
while for the coherent state averages there holds’
loa(B)]* - [xa(B) — Jova(8)[2 — |xg(t)[2 = O (4.13)

with «;(t) given by (4.2). In the tree approximation we have the same restriction but
for classical trajectories !

o () + [oxa*(B)[® — Joeg(8)[® — |eg®(8)]? = O. (4.13)
Using the formulas
Qi(t) = [ daa - gj(x, t) (4.14a)

Pye(t) = [ daoy(, t) V, Sy, ) (4.141)

4 Fortschr. Phys. 35 (1987) 11
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P 1\/2 ¢
g = (73 — E—) exp (—iQs)

P,— P, 1\12
Sl

(4.21)

which determines the four-oscillator coherent state domain, displaying an explicit
parametrization in terms of the phase space variables of the classical Kepler problem
(apart from the presence of the Planck constant &).

The above analysis at the same time implies the following transformation of the four-
oscillator Hamiltonian

4
H*=w) J; =20P;. (4.22)
i=1
By comparing H'® and H,'® in the (Qy, @,, @3, Py, P;, P;) parametrization, we realize
that the canonical transformation

2n2m(Ze*)* 1

Pibi=—r
—~ o w P3
Ql”*Ql*WQl 1
- (4.23)
@ = Q; =23,
Pi:Pi

allows to identify the transformed four-oscillator Hamiltonian with the classical Kepler
one

AH,)¢ =20P, = H'* (4.24)

which establishes the link between the classical four-oscillator dynamics and the dyna-
mics governed by the Kepler Hamiltonian: in the tilde parameterization the classical
Kepler and (constrained) four-oscillator dynamics do coincide. It means that the classi-
cal dynamics of Kepler trajectories @;°(t), P;%(t) can be either generated by the (classi-
cal) Kepler Hamiltonian, or equivalently by the (canonical transformed) constrained
four-oscillator Hamiltonian.

It is the point at which we make transparent connection with the stochastic mechanics
of Nelson and Guerra. Namely, since the coherent state expectation value of the four-
oscillator Hamiltonian entirely fits to (1.1)—(1.13) the fact that the classical oscillator
dynamics coincide (in another parametrization) with the Kepler dynamics allows to
extend the stochastic mechanics methods, valid in the oscillator case, to the Kepler
problem.

Let us denote g, S of (4.11) as ¥, S¥ (K means Kepler) and for oscillator [3] gos¢, Sos¢,
respectively. In both cases [E > 0 and E < 0) on the classical level we have a canonical
transformation from the Kepler Hamiltonian to the four-oscillator one (repulsive and
attractive, respectively). By virtue of (4.16)) (which is valid for continuous and bound
systems) we find the canonical passage from (¥, S¥) to (0°%, S°¢). Let us emphasize that
(0¥, 8X) do not describe the stochastic process underlying the complete quantum Kepler
problem. The equivalence with the four-oscillator arises as a result of the tree approxi-
mation procedure. One can state the problem of constructing thestochastic processesfor
the Kepler case itself. Our result can be verbalized as follows: in the tree approximation

the stochastic mechanics of the Kepler problem is the same as this for the constrained
four-oscillator.

4%
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Appendix A:

Poisson brackets (2.27): The Canonical Structure after the Kustaanheino-
Stiefel Transformation

For functions u, » on the classical four-oscillator phase-space we have

ou  ov ou 81}) (A1)

{u’v}o")_k 1(@71’:: 0P, 3Q,)
From (2.26) there follows

= 2(QiQs — Q,0Q,)

T2 = 2(QhQs + Q5Qu) (A.2a)

73 = Q" + Q2 — Q2 — @2

1
P :Z(Q:!Pl —Q4P2+Q1P3—Q2P4)
1
P = (P + QP; + Q,P, + @sPy) (A.2b)

1
PSZZ(—Q1P1 + Q. P, +Q3P3-Q4P4)-

The Poisson brackets {¢i» 4} = 0 are trivial. To proceed with {p,, p;} let us first notice
that

0 1 1
s oy T A3
0 T (A.3)

which implies
, - -Op,
{1, pa} = ) Qk(QsP — QuP, + QP — Qo P,) — Pk

nex .l ap, W&Py + QP, + QP + ,P,)

1 9 P,
+550—(Q3P — QP + Py — Q,P, )aP

k

1 81”1
~ 2 o 5 (@P @ 2+Q4P3+QsP4)}

= — 5 (0P, — OBy + 0P, 0P (0 4 005
+ O+ Py + Py £ 0P (00, — 0

1
+ 57 (@Ps — QP, 1 Q,P, — @, P,)
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= 5 @FUP, — QPP + QPP — QP
5 (@QQP: + QPP — QP — QP
+ 57 (@ — Py + QPy — QP
= 10 + @) QWPs — QuP) + (@ + @) (QPs — Py
+ 55 @Ps — 9Py + 0Py — GiP)
L 1Q + Q) (GPs — QP + QuPy — QoPa) + (@:Ps — QP
T 57 (P — QsPs + QPy — QP
= 5@+ Q) @Ps — UPy + Py — QP

1
‘27_‘2(Q1P4—Q4P1 + @P; — @Q:P,) ~ 0, (Ada)

4 1 0
(P03} = % {_’—2 Q(@3P; — QuPy + Q1 P3; — Q. P,) 4

o} Py
.1 op,
aE '}3 8_Pka(_Q1P1 o szz e Q:;Ps - Q4P4)
1 0 o
+ 3 50, (@F1 — QP + Py — QPO 7
10 0 .
— 538 a0, "GPy + GuPr + QuPs - Q4P4)}

1
= —2—73 (Q3P1 - Q4P2 + Q1P3 - Q2P4) <—Q12 “+ Q22 *T sz - Q42)
1
+ 5 (@5@1 — QuQs) (— Py + Qo Py + @3 Py — Q,P,)

1
+ 55 (@sP1 + QP> — Q1P — @, P,))
2r
1
=55 (—@1°Q: P — @:2Q5 Py — Q323 Py + Q420 Py — @°Q.P,
— @Q°Q4 P, + Q5°Q4 P, — Q2QuP; + @?Q1 P3 — Q%01 Py + Q42Q,P5
+ Q@1 P3 — QP Py + Q2.5 + Q200 Py + Q42Q,Py + 2Q3Q:,0, P,

- 2Q4Q3QIP4 == 2Q4Q2Q1P1 - 2Q4Q3Q2P3)
1
S 5,3 (@:% + Q2% + @3 4 Q4®) (@3Py 4 QuPy — QiP5 — Q,P))
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= 5 PGP, + QPQUP, — Q2QPy — QQ,P, + Q0.0 P,
— @QQiPs + QuRP, — Q0uQ,Py)

— (@0 + 000 AP, — (@ + 0100 AP, + (@:Q: + Q1) QP
— (@Q: + Q:0)) Q,Py]

= 5 (@00 + Q) (WP, — Q.P, + QuP, — QuPy) ~ 0, (Adb)

4 1 0
{P2; s} = )] {—?Qk(QzPl + @i Py + Q.P; + QsPy) =
k=1 r aop;

190
+ 13 55 %—QPs + P, 1 QP — QP

1 0 a
T 57, (GF OB+ QP + QP I

~ % 9P, 50, (—@iPy + QoPy + Q,P; — Q,P,)

= — 55 @P: + 0Py + Qs + QP (— 0+ 0 1 0 — Q)
(@ Q) (—QPs + QP QP — 01y
+ 57 @P) —QuP, + P, — Py

= (0P, — 02QUPs + QALY + Q00P, — GO,
+QORP: + QP — QRRPY

— 100 — 00 0P, — (@0 — 0,95 QP
+ (@0 — 00 QP) — (@40 — Q.0 @.P)

= (00— Q) @ — QP+ OGP — GPY ~ 0. (Adg

Everywhere A~ means vanishing of the expression on the surface of constraint. The
remaining brackets satysfy exact identities

4 9q, 0 1
{01, 1} :k‘l % aL;k = . (@s® + Q2 + Q2 + Q% =1 (A.5a)

D

09, op, 1 .
P @ 5171: ki (@@, — Q40Q; + 19y — QzQz) =0 (A.5Db)

4 1
{91, pa} = > 20. 2P. — s (— @501 — Q4Q, + 1@ + Q.0 =0 (A.5e)
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4 99, Op,

1
{925 P1} :k=1 @ 8—P,, = =3 (Q:Q3 — @1Qs + Q@) — @) =0

N B
{92, P2} —]‘é‘lgé;a_l)’"_7(Q22+Q12+Q42+Q32)‘*1
_ ;09 0ps 1 _
{2, P3} —ké‘lé‘é';a—Pk—T(_Qle + 1@z + Q4@ — Q:Q,) =0
op) =5 28 _ L (0.0, 0,0, + @0 + @) =0
3> M I:=16QkaP 1v3 294 3v1 49v2) —
4 9q, O 1
(a3, ) = 2 700 7B = - (—Qu0s — Qs + @@ — QU0 = 0
4 0q, 0 1
(2ol = X g0 o8 =~ (@ + QP+ 0 + Q) = 1
Appendix B:

Tree Approximation of the Heisenberg Equations

Let us begin from the derivation of (3.5) and (3.8). We have:

2m(Ze?)?

Y2H — _hz_
so that

[Y*H,a,]-. =[Y?H,a;"]. = 0, k=1,23,4.
Furthermore

Y2[H, b]~ i [Y2: b]— H = O: b= Qs ak+

1

[H, a;]- = —W[Y{ak]_H k=1,23,4

H, a,* 1 Y2 af]_H

[H, a ]':_W[ sot - H.

Commutators [ Y2, a,]_, [Y?, a,* ] are trivial

[Y%a] = —Yas ; —af ;Y

[Y%a ] = —Ya;; —as;Y. 1=1,2,3,4

Inserting (B.3) to (B.2) we obtain (3.5). Analogously for H’, (3.8)

1
H,a) = — = [X,a] H

1
.0} =—%[X,a'l B  k=1234

787

(A.5d)

(A.be)

(A.51)

(A.5g)

(A.5h)

(A.5i)

(B.2a)

(B.2b)

(B.2¢)

(B.3a)
(B.3b)

(B.4a)

(B.4b)
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while .
[X, ¢;]- = —(a,%a, + @y + 1) a; — a;(ay%a; + aya, + 1), = 1,2
(B.5a)
[X, a:]- = —(a5*a; + aay + 1) a; — ay(azta; + as a, + 1), i =34
(B.5b)
(X, 8] = (aia; + a,ta, + Da;* + a;*(a,"a; + ay*a, - 1), 1=1,2
(B.5¢)

[X, a;*]. = (a3*a; + agfay + 1) a;* + ai(ag ag + aya, + 1) i=3,4.
(B.5d)
From (B.4) and (B.5) we get immediately (3.8).
We are now ready to pass to classical Hamiltonian equations. Let us begin from the
continuum case

S d ' )
0, _th_l (x| :%; o) = %(a] (H, @] |&)
- ;l_ % (2_Z>1/2 (] :[H, @y + a;7]: |
i1 [ 2h\12 1 1 : . ¢
:EE(M) ol g el + ract YH — 3 ol — 37 a,YH: |o)

1
mo] T (] (as — a7) ek o)

- (2 ey

= %(»2(Ze2)2 " £y 7 - = g[;: (B.6a)
{T (Q1Q4 a Q2Q3) - 2*m (P1P4 - Paps)J !
1P dp i
| ((Ttl = (a5t 1|y = hi (xl:[H, P,]: |x)
= 2% (2hma)\? (x| :[H, a; — a,*]_: )
mo \U2 4 Ze?)? 1
= (%) _m<ﬁ+)<“l Hay + ) el o)
= %(1)4m2(Z62)2 s % 1 5 = —%.
%7 @~ 000 — ;- 2, - 23 ‘
(B.6b)

The rest of equations (3.7) follows in precisely the same way. Let us recall that :[H, Q]:
means first computing the commutator, and nextthe normal ordering of the result. For
the discrete case (E < 0) we have (3.9) i.e.
1 [2h \12

(ﬁ) («f :[H, 0y + @t ] )

maw

2

L 2k \Y2 m(Ze2)2 1
, ) m(ﬁ: : («] :(@y — a,%) (@%a; + ayta, + 1) Xz [oc)

S~

Ql:

s |

w
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= 2(Ze?)? w?

mw?

P,

(@ +sz)+—(P + P, )}

X 5 :
{[mw (@® + @) + <P12+P22>J. [ (@s2 4 Q4 + (P3 +P2>”

oH'*

- (B.7a)
1

1 (2hmw) 2 (x| :[H', @y — a;7]_: |a)

Pr=gp

1 Z 1
T (2hma)'/? ——— iiae <0‘ (@ + &) (@170, + ay'a, + 1) F: |oc)

= —2m2w*(Ze?)? .
z 1
@ [”323 (@ + @) + 5 (P2 + Pf)]

& mw? 2 [mew? 1 22
5@ +an+ L me+ e + |5 0o + g pe+ o]

oH'™
-2 (B.7b)

The same scheme works for the remaining equations (3.9).

Appendix C:

Classical-Quantum Relationship for the Repulsive Harmonic Oscillator

We have the following Hamiltonian for the repulsive harmonic four-oscillator

1 4 1 1
Hy=—Y Pi‘l =% mw? Y] Qiz. (C.1)
i=1

]

2m o

Taking into account the boson realisation of operators PO, (2.14) we get
.
HO:—Ehw ) (aa; + a;ita;"). (C.2)

We shall show that «;(t) defined as in (4.2), with H, instead of H fulfil the classical
equations of motion (such property is obviously shared by the attractive oscillator). We
have:

aj(t) = (o] e@hHotg =GR Ht | ) (C.3)
and

[Hy, a;]- = hoa;* : (C.4a)

[Hy, a;t]. = —hwa;, 1=1,2,3,4. (C.4b)

Using the formula

eXYeX = X + [V, X] + [Y B0 q B L (C.5)

5 Fortschr. Phys. 35 (1987) 11
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"We arrive at

I3

; ; ) t \%1
e(dﬁ)mta’_e—(t/h)mt =g L = HH,, a;]. + (_ ) ET[HO’ [H,, a,-]_]_ k-

=0; + tw + a;t — (icut)z% a; — (twt)3 i a;t 4+ (iwf)

; 1
+ (za)t)5aaj+ —f"' e
by 2 1 1 6 1
= |1+ (wt) 31 + (wt) i + (ot) 81 + ) a;

: 1 1
+ 1 (a)t + (wt)”g—! + (wt)3 5l + ) a;t

= @; cosh wt + ta;* sinh wt,

gt — gr 4 £y o) +(; O gt 17,01+
: 1 1
= a;" — iwta; — (zwt) * + (fwt)? 3%
root)4 ! + rot)d AN 1 +
—{—(w))aai —(uu)g-a,—(zw)aa, +
=11 521 t41 tﬂl *
= {1+ (@5 + (0 nt@eat e
, 5 1 ;1
— i (ot + (wt) 31T @5+ g

= a;" cosh wt — ta; sinh ot
5o that
xi(t) = (x, t] a; |x, t) = x; cosh ot 4 i&; sinh wt

&(t) = (a, ] ;" |, t) = &; cosh wt — to; sinh ot 1=1,23,4.
After accounting for (2.14) and (2.17a) we find that:

k() = (o, 8] Py |, ty = PO cosh ot + mw@,? sinh wt

1
0

(C.6a)

(C.6b)

(C.7a)
(C.7b)

(C.8a)

1
(t) = <0¢, tl Qk lzx, t> = Qk(] cosh wl + %Pko sinh wt, k= 1: 2: 3) 4.

(C.8b)

which on the other side follows from the Hamilton equations for the repulsive

oscillator

= ma)sz(t), k = 1, 2, 3, 4.

(C.9a)

(C.9b)
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Accordingly (compare e.g. also the case of the attractive oscillator) we can construct the
oscillator stochastic process directly (without use of any approximation) for the repulsive
case. We have the following density-phase variables

1 1
o(Xijt) 1= (@royie °XP {—% (X — Qi (t))z} (C.10a)

SiXe )= 7 PO — 3 Q) Pl — = hot,  k=1,2,3,4,  (C.10b)

e
where ¢, Py are given by (C.8). The corresponding stochastic equations for the repulsive
oscillator do not differ in form from this for the attractive one [3].

Appendix D:

Systematics of the Poisson Brackets

We have the following relationship between variables Q, Pand «, &

me \1/2 7
(Xj = (W) Qj + —(2ﬁm__m)1/2 Pi (D.la)
me \1/2 )

X = | —— i — ——— P. | = : D.1b

E (25 ) o (2hmo)t/2 ~ 1 1=1,2,3,4, ( )
so that

{xes «jlo.p = (&4, &ilgp =0 (D.2a)

_ 1

{oks Xiho,p = 7 Okj (D.2b)

where .
4 /0 @ Jd ¢

"t = an oD Ao ) k).:1;2;3)4' D'3

o l.é; (an oP,  oP; GQ/.-) ! ol
If we take

4 (o0 ¢ J 0

S A L D4

£ Yoz ,f); (aak 0X,  OXy aak) ()
as the Poisson bracket definition, then _

@k, @i}z = (P, Pil.:=0 (D.5a)

{Qk; Pj}a,a == 7h6k7: k; 7 == 1) 2: 3: 45 (D-5b)
and

{A, Blog = ik{A, Bg,p (D.6)

for two arbitrary functions of variables «, & (respectively, by using (D.1) of variables
Q, P).

Now let us pass to new canonical variables Q’, P’. Because of
p >

4 304 6$ 4 a(ﬂ &ﬂ
' pr — sl e S s v e T =
{(4, (ﬂ}Q = 8,12:11 8043 azx, {0‘8, 0‘1}0 P +8j_;1 6&3 a&—l {(Xs, 0‘[}0 WP
4 (04 OB  OA 2B
o, 0%, ®q.p D.7
+8-é1 (a“s ox, 0 aas) {os, &ilgp (D.7)

5%



792 P. GarBACzEWSKI, D. PROROK, Stochastic Mechanics

and (D.6), since (@, P) <> (@', P') is to be canonical, the following relations must hold
true

s abgrpr = (&, Xilg.pr =0 g (D.8)
_ 1 .
{Ak, A]’}Q/.P' = E 6[‘-7', ]C,] = 1, 2, 3, 4.

Coming back to (4.16) we realize that

x> Xjlo,g = (&, Xjlo, s = 0 (D.9)

1
\(’xh 0—‘]'}9,.7 = Z-_;;akj: k’j == 1: 2: 3’4'
and comparing it with (D.8) we get
{A, Blo.s = (A, Blq,p. g (D.10)

Now using formulas (D.1) and (4.14) we can express «, & as a functions of o and §, and
find Poisson brackets (4.17) for the former in terms of the latter.

We have
0x; mao \1/2 5
= %k [\op” Dhmenie Lk D.11
Ok () ik [(2ﬁ) &5 (2hmw)1/? P"} (D.11a)
BRI y—— Yy - 1
)~ %y e %) (& — Q) (D.11b)
SO that,
X5 Xjto,s = {&iy Xjls = 0, 1,)=1,2,3, 4. (D.12)
For {x,, Xjite,s We find
= . O OX; Oy OX;
(g, X o= Y | d i i
Xkes \J}Q,S =1 % (égl(x) (SSI(Z') 68{(1') (SQl(x))
11 : 1 -
- E ;ékj/ dmgk(x) (x2 - Qk ' 1') o E 6’671 ky? = 1; 2; 3, 4’
(D.13)
and finally
b Blor = 14, B s D.14
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