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1. The quest for elementary quantum statistics: a synopsis

1924
1925

1927
1928
1932
1935

1938
1940

1956
1958
1958

1958
1960

1964
1965
1965
1965
1970
1970

1970

Bose statistics

Pauli exclusion principle

Fermi statistics

Spin hypothesis

Spin iu.Quantum mechanics: Pauli equation

Dirac gquation
de Broglie, fusion (neutrino) theory of'light(1)
Jordan, neutrino theory of light, fermionization of bosons

(2)

and its reverse i.e. bosonization of fermions
(3)

Pryce, no-go statement for the neutrino theory of light

Holstein and Primakoff, boson expansions of (finite spin) Lie

(4)

algebras

Dyson, spin wave theory by means of the finite bosons expan-—

(5) .

sions
Burgoyne, Luders, Zumino, spin-statistics connection in rela-
ST i 6

tivistic local field theory( )

Heisenberg, nonlinear unified field theory of the spinorized
)] .
(8) '

universe
Skyrme, fermions from bosons in 1+1

Marumori, boson expansions for the (nuclear physics) Lie al-

gebras(g)

(10-14) alsov(15,1t3)

Schwinger, bosonization of Lie algebras(17)
an

neutrino theory of light, a renaissance

Penney: bosonization of Lie algebras

(18)
19)

Penney: fermionization impossible if the system is finite
Streater and Wilde, fermion states of a boson field in 141

Kademova and Kalnay, bosonization of finite Fermi sys-—

tems(20—22)

Freundlich, bosonization and fermionization of massless

fields in 1+1(23)



1974
1974

1974
1975
1976

1977
1978

1979
1979
1981
1981
1982
1983
1983

1983

1983

1984

1984

.+ =fermionization theories(

Okubo, bosénization of Lie algebras(za)

Carbaczewski and Rzewuski, strict bosonization of Fock rep-

resentation of the CAR algebra, irrespective of the space~ti-
X . (25,26)

me dimension
Luther and Peschel, Jordan’s comstruction further developed

Coleman, the concept of fermion-boson equivalence (duality,
. - 5 (28-32)
reciprocity) in 1+1

Fermions as boson composites in 1+3, dyonization of fer-
mions(33,34)

\
Nakanishi, bosonization of Thiriing and Schwinger models(35’36)

Garbaczewski, quantization of c~number (non-Grassmann) spinor

fields: fermions can be achieved via bosonization in 1+3(37)

Zhelnorovich, tensorized universe: tensorial description of
spinor fields§38)
(39)

(40,41)

(42)

Luther, bosonization in 143 for Tomonaga fermioms
Frenkel, affine Lie algebras and bosonization in 1+1
Dobaczewski, bosonization of Lie algebras, unification

Zhelnorovich, Takahashi, spinorization versus tensoriza-
tion(43-45)

Aratyn, Bose representation for the massless Dirac field in
(46)
1+3

Sorkin, particle statistics in three space dimensions, dyoni-
zation deveioped(47’48)

Apostol, improvements of zggdan—Luther—Haldane bosonization-
Garbaczewski, mechanisms of the fermion-boson reciprocity(so)
the quantum meaning of classical (field) theory‘for Fermi sys-
tems, via bosonization(51’52) \
Garbaczewski, joint Bose-Fermi spectral problems, or fermion—
boson unduality in 1+1 and 1+3,(37’55—57)
Luther ans Schotte, boson-fermion duality in 1+3: neutrinos

from photons and vice versa(53)



1984 Witten, non-abelian bosonization in 1+1(54)
1984 Rajeev, fermions from bosons in 1+3 through anomalous commu-—
(58)

tators

2. Fermion-boson relationships: duality‘or unduality.

For identical quantum particles, the respective multi-point wave func-
tions, according to the folk lore recipe, are either symmetric or an-

tisymeetric. Indeed, the symmetrization postulate (apart from problems
59
( ))

with the experimental meaning of the concept of identical particles

can be, justified and even proved(60’61)

-

on the level of non-relati-
vistic quantum theory. The two possibilities, corresponding to symmet-
ric and antisymmetric wave functions, appear in a natural way in three~
or higher dimensional (Euclidean) spaces. In one or two dimensions the-
re is allowed a continuum of intermediate possibilities which conmects
the extremal boson and fermion cases.

In the relativistic quantum field theory, the celebrated spin-statis-—
tics theorem(é) infers from the locality postulate that (identical) par-
ticles with integral spin are bosons, while these with half-odd-integ-
ral spin are fermions. The possibility of para-statistics we leave asi-
de‘(bz)

For the fermions-from-bosons constﬁuctions which involve magnetically

charged particles, the respective statistical properties must be formu-—



lated as a certain kind of relationship among non-identical partic-
(47,48) : ; : s

les . Then, the conclusion is that bosons can combine to form

fermions without violation of the normal connection of spin with sta-

tistics (dyonization in 1+3).

It is obvious that on the levelof conventional (identical particles)

quantum theory, the only realistic objection against the universality

of the fermions— from- bosons route may come from the spin statistics

theorem: the spinorial description is then related to anticommutati-

vity, while the tensorial onme to commutativity. Nevertheless it does

not yet mean that "Whereof we cannot speak, thereof we must be silent"

(L.Wittgenstein) since before, onme should ignore that:

(1) not only tensors can be completely given in terms of spimors (spi-
N ' _— (43-45)

norization), the reverse ~ tensorization procedure works as well

(2) for a comsistent particle interpretation Fock representations are

necessary, and each Fock .representation of the CAR can be embedded

(25,26)

?*

(bosonization) in the bicommutant of tmis of the CCR see e.g.

also at the non-Fock extension in(37’55).

Mathematically nothing forbids one from viewing the bosonic and tenso-
rial description as primary (elementary) against the fermionic-spino-
rial one. Let us also mention that not ali Bése models can be fermio-
nized, while there is no Fermi model which would not admit any form of
bosonization. Hence we do not find the search for elementary (primary)
quantum statistics unfounded. But once such a problem is stated, we
should realize that irrespective of the fact that the known (iess or

more elementary) particles are identified eitler with fermions or bo-

sons, we thus admit that the deeper elementary levels may in principle



display the bosonic rather than fermionic features. This quite unusual
hypothesis of the statistical asymmetry in favour of bosoms, in dif-

(8,19,22,26,37)

ferent forms persists in the literature . One may ob~-

viously insist on the fermion-boson duality(53)

that: “since the pho-
ton can be constructed from neutrinos, and inversely neutrinos from

the massless bosons, neither bosons nor fermions are truly fundamental",
"an obvious issue raised by the duality relations concerns the meaning
of a fundamental particle. If a boson Hamiltonian with purely boson
eigenstates, can nmonetheless produce a fermion, these bosons could be
termed fundamental. But the inverse construction obviously denies this
role. Neither can be accepted as fundamental”. But this is merely the

manifestation of the "Coleman-route-slavery", since one insists on the

boson-fermion correspondence:

Hy = Hp . 1

on the level of Hamiltonians, completely ignoring the rigorous proof

(25,26) of the algebraic superiority of bosons with respect to fermionms.

It is ironic that the authors of(53)

after demonstrating a remarkable
. relationship of internal enmergies of the system of massless bosons and
fermions:
© k © k

Iz L = 3 gp- —2
{2)n=1 exp(Bkn)+1 {0} n=1 exp(Bkn)-1

€2)




where I” indicates a summation over odd integers only (thus a part of
the available bosonic data suffices to get the Fermi system reconstruc-
ted), could have only mentioned that "there is an altermative that

views the boson degrees of freedom as, in some sense,more fundamental”...
which is in;deed the case, provided one does mot ignore the existing
literature on the boson—férmion relationships. For example the boson-

fermion unduality summarized in the joint Bose~Fermi spectral problem

£ (37555757)

By =H + (1 -p)nB(1'-p) 3

B = PH,P P = Px, P°=r

shows that (1) is an exception rather than a rule. Moreover the more
™o

sophisticated version of (3) may arise: in principle one can admit that

for some Bose models there exists a countable family of projections:

IP =1, PP

W17 Safi e [PeBgl =0 (4

such that (the thermal it -+ « interpretation is here particularly ap~-

pealing):

tr exp(-itH) = L exp(~iKf ©)
).

ko nr,



and the respective Bose model can be viewed as a (infinitely) reducib-
le Fermi model, or even as a "tower" of possibly distinct Fermi models,

each one with its own Hamiltonian H:.

3. Boson-fermion dictionary: Coleman and followers

(28)

The popularity of the Coleman’s route among the so called pragma-~
tists is unquestionable, hence we shall not embark on this topic. Ins-
tead we shall briefly recall the ;ules of the game in which one repla-
ces fermion bilinears by suitable functions of the boson field. E.g.

in 1+t dimensions one has(sa):

oyl <007 + 10,07

ivyPs pe> 43 ¢d"
. 1y auw ] u¢ $

.
127 «> - — cosVhT ¢ :
e (6)

iiysw «> ?1(; sinvhT ¢
- H

yyy e

WOy <o

Here 1/c plays the role of the ultraviolet cutoff, ¢ is taken to be ze-



ro at the end of calculations in which bosons are used to replace fer-

mions. The underlying fields are canonical:

[e(x),n(y)]_ = is(x-y)

n
SRORMONRERICT)) 0,0=1,2
Upon (6) the (f?rmionic) Thirring model Lagrangian:
L = 0 v - & Gr'w Gy ®
allows a transformation to the (bosonic) sine-Gordon model:
Ly = 40, 03% + 2 cosl 211 )

1+ 8
kit

which is an essence of the "colemanology". Analogously e.g. the free
massless fields satisfy ‘the following equivalence:

L=bidp=i a“¢a“¢= Ly (10)

(54)

By now a generally accepted folk lore statement is that any Fermi
theory in 1+1 dimensions is equivalent to a local Bose theory, which
manifestly preserves all the symmetries of the Fermi relative. Obvio—
usly it cannot happen in 1+3 dimensioms, at least if the locality an-

satz is not relaxed. Therefore the construction of Fermi fields as (non~

local) functions of Bose fields was mostly considered in 1+1. Since in
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the study of any sfandard equivalence, the (anti) commutatién rela-
tions like (7) are the basis of fe;mions-from—bosons construction, it
is not worthwhile to recall the mathematically rigorous construc-
tion(zs’zs) of the canonical Fermi fields (CAR algebra generétors)

in the Bose field (CCR algebra gemerators) algebra. The main issue
here is that this comstruction does mot rely on the specific choice of
the model (Hamiltonian), and space—time dimensionality. Later attempts

(39,46,53)

to get fermions from bosons in 1+3 strictly refer to the

particular model (massless Dirac‘field) and to the duality assumption.

Keedless to say that except for(46) the universal construction of(zs’

26,37) is simply ignored.

4. BCS pairons and the fermionization of bosons.

v

‘The prescription of mapping fermion bilinears into bosonic expressions
has a long story and léug before(zg) has been coded in the physicists’®
mentality. Apart from the folk lore the apparent diffiéui;ies of this
neutrino-theory of ~light impact should be mentioned. The best examp-
le in this context is the controversy abou% the so called pairon'con—

(63-66) 54t both the

densation in the BCS model of superconductivity
no-go statement by Penney(18) and the final abandoning of the exact Bo-
se statisties for neutrino composed "photons“(14) fall into the same

category.

Let us consider fermions on the three dimensional lattice:
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[cka,cl‘;,o,]+ = 8k S0 k,keR
o (11)

[dkc,ck,u,]+ = Q 0,07 =4, ¢

An obvious intuition about the ground state of the BCS system is that
of the condensate of electron pairs. The respective pairon creation

and annihilation operators are introduced as follows:

= x = * : 3
by = Sy ke » b = cfy iy (12)

and obviously camnot be literally viewed as bosons since:

[hab 1_ = (1 = mp, =0 6 (13)
[bk'bk‘ ]_ = 0 N
[by,b2.1, = 2Zb,b, . (1-6,,.)

"% = %o ko

Thus the Pauli principle is manifest in the two electron composite. It
" automatically precludes both the Bose-Einstein statistics for pairoms
and their Bose-Einstein condensation(64’65).

To avoid such, problems, the correct mapping of fermion objects into

their boson images must either involve some (Pauli principle saving)
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constraints in the Bose state space(ss’es)

(53,59)

or follow an old Jordan’s

route

(53)

In the notation of let us introduce Fermi operators in three space

dimensions as follows:

[an(n),as,(m)]+ = Gnﬂ‘énm

(14)
[an(n).a Ll =0 an(-j) = aa(j)

k-anL-1 is a momentum label in the direction fixed by the discrete
spherical angle 2 , n,m, being integers. We introduce the operator:

o,
g = v ax (§) ag(j+m) (15)

je—e
where summations L are carried out with respect to the odd integers
merely. Whenever aﬂ(O) or aﬁ(O) appears in the sum, we adopt the conve-
ntion to replace it by 2.i(39(0)+a6(0)) . The following holds true:
pn(nﬂ =0 , I even
* (m”)] = . - ;
log (m),pZa(m?)]_ im§ 0.8 - » mym” odd (16)

log(m),pg.(m)]_ =0

Hence .the conventional (fermionized) bosons are shown to live at the

odd lattice points of the integral momentum space lattice:
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7

$ being the unit vector in the direction Q.

The manifest boson—fermion unduality can be seen here in that the sing-
le component fermion is incapable of repfoducing the whole of the pha-
se space>data of the single component boson. Even the compensation of
this drawback by tﬁe increase of the internal degrees number does not
remove this odd momentum difficulty. Indeed the Luther-Schotte combi-
nation of fermion operators relevant to the construction of photon ope-

rators is defined at odd momenta again:

b, (qQ)

. q-ii’la?g(p)a1ﬂ(p+q)-c§9(p)czn(p*q)]

(18)

b (q) = q_iz‘{agn(p)azﬂ(p+q)-c19(p)c19(p+q>]
P

4 (@ = 0757 Lt pa g (prad ety (B eyg (pva) ]
dﬂ_(q) = q°i§‘[a§9(p)azg(p+q)+cfﬂ(p)c1ﬂ(p+q)]

where the canonical anticommutation relations for a,a%,c,c* imply:
! .

N e U LN S C o (19)
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other éommutators vanishing. Let us mention that the need for odd q's
appears also in another conmstruction of(41)
Apart from the above odd momentum.difficulty, the construction (18)
clearly displays the need for the same number of boson and fermion
internal degrees of freedom. This feature, which is rather unusual from
the point of view of "colemamology" standards, has been demonstrated
many times before(25’37’55), but remained unnoticed in(si). The conclu~

sion that the two independent photon type fields are necessary to es-

tablish the boson-fermion relationship in 143, was d¢emonstrated in the
a3n

, and then related to the antisymmetric ten~—
(46)

bosonization studies of

(67)

sor field background in ', see also

The fermionization (16) can be reversed: fermions are then reconstruc-

(41)

s
ted from the odd momentum bosons. Let us add that in bosons are as-
sumed to live everywhefe on the lattice, while the (bosonized) fermion
is confined to the odd lattice points merely. In this respect the gene-

(25,26) is optional since no configuration or momen-

ral construction of
tum space information is lost: both*bosons and fermions live everywhe-

re in space, either on a lattice or in continuum.

5. Boson—Fermion unduality on a lattice: joint Bose-Fermi spectral

problems

As mentioned before, instead of confining oneself tothe study of boson-

fermion equivalences (e.g. HB=HF) one may relax the equivalence demand
to admit the broader category of boson-fermion relationships. The so

appearing boson~fermion unduality is clearly displayed in the formulas
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(3). Following(ss) we shall discuss an easy example of the lattice
system in one space dimension which obeys (3). (We have also such an

example in three space dimensioms). Let us consider the fermion model:

Beo Z (cf, 00 * cfcy,y) + Viek,o)
(20)

legocfly= S [eyme,1,= 0

where V is assumed to represent the demsity-density interactiom e.g.
2 .
UZ: ' - =ck i - i o
knnnk+1 or li(nk nk+1) ) T=CECL . The forgoing boson-fermion rela
tionship will be established for the pure hopping term, but can be
easily generalized to the problem (20). We assume the periodic boundary
conditions, which implies that irrespective of the choice of (boson or

fermion) statistics, the hopping Hamiltomian can be rewrittenm in the

form:

i,3=1 3
21
wij = 615—1 + éij+1 i,j=1,...,n
so that upon introducing the vectors:
fk
= £ = 1{f, } (22)

&x k ka'a=1,...,n

=



k -1k
£ .= 1, £0= O aeensfy = JU

we observe that:

1 f)=-1~ti.1 xp i 2 (k-1)q =8
7 k1 nq=0ep n 15K

Hence in the notation:

n n
N = 2 Bxa Ca ’ Tl{é = 2 Sra .c:

a=1 o=1 :
¥l = 6 n,nl, =0

we get:

H=H = 12‘;(-2‘] cos ZT“ k)nf(nk

But if instead of fermioms to use bosons:

[ak’a{]— - le > [ak’a]_]— =0

the formulas (22)-(25) lead to the conclusion that:

16

(22)

(23)

(24)

(25)

(26)



n 2m

H==J izj.;ja{ﬂiiai: T(-23 cos— k)'E"'kEk (27)
121 ) .

& u_1glga LS
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The respective: eigenvectors belong to the n-body Fock space of the Bose

and Fermi chains:

|

lm nd> = i Emn o>
12°°°*"n"B 1 °*" "n B

(28)
*Py *Pp
]p1,...,pn>F= Nyleee M lo>,
|0>B,10>F being the Fock vacua.

Now in the boson case we compose the product of two-level proijectionms:

p=1p (29)
x F

* * *
P " :exp(-Ek Ek): + Ek: exp(~ Ekik): &

which has the following properties:

[8,,P]_=0 Hy = PHP + (1-P)H;(1-P)

+ -

%
P;kP = Uk PEkP = Ok (30)

= % , LI A

[uk, ok]+= Py» [o ,01]_ 0 k¥l
k k k k

* 1 *p - +. 1 +., n

PE, - £ 7oy = 0 1 .l (0) Plosy

(nr;.‘)k =0, k>1.



k kO k k
. 1 +'n = 1 % n
k;S1 Vi (01? ee (o) {o>B By eee By |0>B (31

it is quite obvious that through defining fermion operators in terms of

Pauli ones, by means of the Jordan—Wigner transformation:

k-1
* . + =+
n = (exp 1«521 aj aj)-ak
(32)
ke

~1
. + - -
n = (exp lﬂjzl'oj oj)-gk

we arrive at the following identities:

*P1 *Pn + p«' + pn *P
Ny eee g IO>B =(6) .. (o) jo>, = €

P
1 *n
1 b |o>B (33)

_in the state spaée of the Bose system. Hence:

*Pq *Pp

*Py *Pp #Py P
Hy ny'ee. n® |0>p = PHPR L. 0 B0>) = Hon, ...nn“10>B (34)
The relevant information at this point is that the projection P though
03 - * ) & . *
defined in terms of Ek’sk’ (and only through a* »&, expansions of gk’gk
in terms of the initial Bose operators) is nevertheless a projection on
the state (sub)space HF in HB’ which includes all possible Fermi states
of the Bose (CCR) algebra comstructed about the Bose vacuum. In fact

we have: P(E*,E)HB = P(a*,a)HB = Hf.
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6. Boson-fermion unduality in continuum: joint Bose-Fermi spectral

problems for quantum fields in 1+1.

Let us consider the nonlinear Schroedinger field:
B = 4[7exvedx + 4R AOIVEPIG 6 exdy
[$(x),¢*(y)]_ =6(x-y) | [¢(x),;(y)]_ =0 ’ (35)
V(x~y) -rc-s'(x-y) e20

It is well known that the eigenvectors of H read as follows:

n
|k1""'kn> = f[ I dx. exp 1ijj]x

=1 !
) k.=k.-ic
{155<I-1Isn [6(x;~x;) + O(x;x.) f:ﬁchz 1e%(x).. 0% (x ) |0>
' xzy (36)
ki< aee <k o (x—y) ={o <y
$(x)[0> =0 v x€R o

‘The underlying Hilbert space in which (35),(36) make sense is the Fock

space HB for all cz0. The particular c=0 limit of (36) reads:

’ n
[kl,.,,.,kn>B = j[j£1dxjexp iijj]¢*(x1)...¢*(xn)lo> =
= @™ axe)...ax (k) |0> (a7
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[a(k),a(p)*]_ = 8(k-p)

which corresponds to the free Bose system.

The reverse limit of ¢ - « allows to recover:

n
lk1,...,kn>F = fdx1... fdxn(exp i §-1ijj)x

(38)
'xo(xt,t..,xn)¢*(x1)...¢*(xn)|0>
wvhere:
O(X, peeepX ) = T [e(x.—=x.) - o(x.=x.)} . (39)
L 3t
satisfies:
EI 2002y =
o, =, on(1 cn) 0
(40)

0(ees T e Egoeen ) = - U(...xj...xi...)

and is an example of the multiplicative alternation involved in the

constructions of fermions from bosons presented in(25’26). Indeed, if

to introduce the following bosonized Fermi operators:



21

b(x) = § (1+m)} Idy1 oo Jay, 03 ppeeeny )x
n

xo(x,y1,...,yn)¢*(y1)...¢*(yn): expl-[da¢*(2) $(2)1:4(x)9(y,) ... 9(y.)

[b(x),b(y)*) = 6(x—y)1F 1)

where 1. is a continuous gemeralization of the projection P of Section

5 (see e.g.(sz)):
1
= Z ;ﬁ-fdx1... Jax| o?xypeeesm Do*(x )0 0¥(x)
(42)

: expl- [dye*(y)e(y)]: ¢(x1) eee 0(x )
then, by inspection, it is easy to verify that:

n
]k1,...,kn>F = fdx1:..]dxn(exp1 }giijj)b*(x1)...b*(xn)]0> =

n/2

= (2m) b*(k,)...b*(kn)|0> =

5
& o(k1,...,kn)fdxl...fdxn(exp i §=1ijj)a*(x1)...a*(xn)IO> -

n/2

= (27) o(k1,...,kn)a*(k1) cee a*(kn)|0>. (43)

The free Fermi system thus arises im the ¢ + = limit.

Here the continuous transition from c=0 to c= results in the contrac-
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tion of the dynamically accessible state space of the Bose system from
»the Fock space HB to its proper subspace 1FHB=HF.

The joint Bose-Fermi spectral problem relates h%re the free Bose and
Fermi systems:

- u; = u; + “-"F’H%“-'p) (44)

Hp = 1gfigly

but one should realize that its extensions to the interacting systems
in 1+1 were found: the examples of the massive Thirring and chiral
invariant Gross-Neveu models satisfy (3), see(37’52’55).

Let us here mention that the existence of the Bose variant of the (con-
ventionally considered as) Fermi model allows to establish.a passage
from the Fermi model to iés well defined classical (non-Grassmann)

partner, see§51,52)'

7. Mathematics of bosonization: representations of the CAR generated

by representations of the CCR.

As mentioned before, tle fermions-from-bosons comstruction which is ge-
" neral enough to account for any number of space time dimensions and is
in' fact model -inde#endeht, was invented in the years 1972-3(25’26) in

the attempt to get rid of Grassmann algebras while quantizing spinor
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fields via path integration, see also(51'52’55).
So far the straight applicability of this construction was unambigously

verified for space dimensions lower than three. In case of 1+3 the par-
(37,57

tial results were obtained : the physical meaning of such (a prio-

ri realizable) bosonizatibn is yet obscure in the Minkowski space. Com—
pare e.g. the interpretational problems of(53)'

Our model independent bosonization originates from the study of iso-
morphisms between certain subspaces of antisymmetric and symmetric wave
functions in the Hilbert space. Since such wave functions are used in
the so called Fock conétruction of domains for field operators, we can
combiqe this study with the demand of the equal time (anti)commutation
relations. The result is that each CCR algebra carries its Fermi part-
ner(s). From the algebraic point of view bosons can be viewed as prima-
ry against fermionms.

Since the comstruction o.f(25,2§)

is not broadly known, it is not use~
less to bring it into light again especially because it is the only
universal CAR=CAR(CCR) embedding, and because its applicability in dif-
ferent areas of physics could be verified.
Let K be a complex Hilbert space (e.g. KéLz(RN) or K=B h.,

: i=1

- n
hi=L2(RN) ¥vi).We denote HnBKen= ? K. Let E_ be a bounded operator ac-

R n ) ¢
ting on the n—th temsor product &=Hn with properties:
1

- * =
E Ey oo I‘:n En * PikEn k

where P., 1s an operator of permutation of the j-th and k~th K entry in
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K&l. Thus Ei is a projection and induces the following decomposition

of H_:
n

(46)
1 2
E2H_ = H_, QEHH_ = H
n’ ' n n
(26) : . oo
One may prove . that En is an automorphism of Hn consisting in par-

ticular ©f isomorphisms:
1
E: S H «—> A H 47

where Sn’ An stand for symmetrizing and antisymmetrizing Young’s ope-
rators in the n-th temsor product.

I 1 2
Since E is 2 homomorphism H_ — H_ with the kernel kerE =H it is
n n n n n

quite desirable to demand that En allows for:
2
A H =0 (48)

We are interested in mappings between symmetric and antisymmetric wa-
ve functions which enter the so called Fock construction of state spa-

ces for quantum fields:

F = {f={f}

n'n=0,1,..." anHn, HEl <=} = n:o Hu (49)

vhere: H =T
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s S S A A A
(50)
UIS(A) = =
g = 3HSW s e,
and:
2 o
.2
hegll = TUEN® <
30
2 2 «
8 42 12
e, 10 = i - gninn =l £ |
provided we make use of:
el Xl (52)
n nn
. . (26)
Examples of the operator En were given 1n e.g.
E = Y e. 0 ...8e, ¢ . €. 0 Be,
n il"'in i, i igeeedip Tig e i (53)

which is defined by eigenfunctions e; G...Oei and eigenvalues €. i

n 1 n
(the Levi-Civita tensor). Here {ei} forms the basis system in K.

Another example is provided by the integral operator, whose kernmel

reads:

En(x1,...,xn;y1,...,yn)=c(x1,...,xn)é(x1—y1)...6(xn—yn). (54)
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Here °n=°(x1""'xn) is the Friedrichs-Klauder totally antisymmetric
symbol which equals O if any two variables coincide, 1 otherwise de-
pending on the (even or odd) permutations of variables. All variables
may stand for either pure space or space plus discrete labels of in-
ternal degrees of freedom.

Now given a (Fock) representation of the CCR algebra generated by:
la(£),a(g)*]_= (f,g)
[a(f),a(g)]_= 0 (£,8) = [axE(x)g(x) (55)
a(£)jo> = 0 Vv £€K a(f) = [dxf(x)a(x)

where in the presence of the discrete labels the integral should be

viewed as a sympol for both integration and summation. The domain for -

(55) consists of normalizable vectors of the form:

‘ -
j£> = :21-6—/5- fax ... fax) £Gxi,..xDar(x) ... ak(x)  (56)

where f(x1,...,xn) is a symmetric wave function and:
T [ax fax_ |£(x 232 ¢ (57)
“ 1" n 12005

The previous isomorphisms can be used to prove the CAR=CAR(CCR) repre-—

(26)

sentation theorem of . LetV¥n En(5;1)=En(x1,...,xn;y1,...,yn) be

an integral kernel of E, in K%, Then the operators b(f), b(g)* given
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by:
b(£) = —'l—'—fdx1 ceoJax fay, ... Jay,
nm n: md
(58)
£ o (xsy) a*(x) ... a%(x): expl- [dza*(2)a(2) }:aly)...aly)
with:

£ &y =1+ 8 qufdzi .-. faz

m, n \
E (x;2)(q) E (2259 (59)

generate a Fock representation of the camonical anticommutation rela-

tions algebra (CAR):

[b(f),b(g)*]+ = (f,g)lF
[b(£),b(g)}], = 0 (60)
b(£)|0> = 0 VEEk
on the Fock space HB (which via the Fock comstruction is isomorphic to
F ). The representation becomes irreducible on the proper subspace of

HB determined by the operator umit 5 of the CAR algebra, which is

a projection in HB
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1
Ig & EH Jax ... Jax_ [dy, ... [ay [az, ... [az

En(l‘.;Z)En(Z3i)a*(x1) ee a*(x) “(61)

exp {~ qu a*(q)a(q)} : a(z1) P a(zn) »

; < 1 2
pif> = Zco — Jax, ... Jax (EI)(x,,...,x dar(x,)...a%(x ) |05,

-

Notice that if to insert into (58)-(61) an example (53) of the integ-
ral kernel (and constrain it to one spaée dimension), we arrive at the
operator formulas (41)-(43) discussed in the context of the nonlinear
Schroedinger model. One should be aware that the multiplicative alter-

nation % in space dimension higher than one has a symbolic meaning

merely. It is a conventional function of space variables in 1+1 only(sol

It is easy to deduce the lattice analogsAof the comstructien (58)-(60),
see(37’55)2

In the above the Fock state '|0> is common for the Bose and Fermi sys-
tems. In terms of the Schroedinger reﬁresentation of the CCR algebra it

means “that the symmetr&zed ground state is allowed for the Fermi sys-

tem as well. For further discussion of this issue see(56).

It should be emphasized that im (58)-(61) the overall number of inter-

nal degrees of freedom must be the same for bosons and fermions. As

(37,67,46)

noticed in it is however possible to impose constraints which
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diminish the number of effective boson degrees, so that in principle
the standard 1 boson — 2 fermions mapping can appear in 1+1. At this
point it is quite instructive to recall the studies of“G) and(53)

where the relationship of internal energies of the boson and fermion

mode in thermal bath was established:
-3 :
EF = (1 -2 )EB (62)

d standing for space dimension. In 1+1 it amounts to the imaginative
statement that each fermion mode is equivalent to } of the boson one,
while in 1+3 the respective fermion to boson ratio equals %— . Consis-
tently the duality assumption:

NFEF = N_E -

BB
(63)

NG - 27 =Ny

would need the number of two fermion components against the single bo-
son one, while (optionally) 8 fermioms against 7 bosons in 1+3. One

has thus explicitly revealed how the duality assumption (63) is used to
hide rather than to cure the apparent boson—f_emion unduality (62).

The most important problem which cannot as yet be adequately discus-
sed, is the physical meaning of the bosonic constituents which are (non-
locally) to compose fermions in 1+3. Some‘preliminaty suggestions in

(37,55)

this connection can be found in , 8ee also at our discussion, of

formulas (4),(5). -
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(33,34,47)

The magnetic monopole or dyon alternative cannot be exclu-

ded as well.

Acknowledgment:

I would like to thank Professor Pratul Bandyopadhyay for his interest
in the topic, which has resulted both in my stay in Calcutta, as well
as at the presentation of this talk at the International Conference

organized 60 years after the quantum statistics discovery by Satyendra

Nath Bose.



11.

12.

13.

14.

15.

16.

17.

31

References:

1. L.de Broglie, C.R.Acad.Sci. (Paris), 195,(1932),862

2. P. Jordan, Z.Phys.93,(1935). 464, ibid 99, (1936), 109
ibid 102, (1936), 243, ibid 105, (1937), 229

3. K. Pryce, Proc.Roy.Soc. A 165, (1938), 247

4., T. Holstein, H. Primakoff, Phys.Rev. 58, (1940), 1098

5. F. Dyson, Phys.Rev. 102, (1956), 1217

6. R. Jost, The general theory of quantized fields, AMS, Providence,
1965
It is pot useless to mention that against the wide spread opinion
the relation between the causal independence and local commutati-
vity still remains a postulate (than a proved statement rather),
see H. Ekstein, Phys.Rev. 184, (1969), 1315, B. De Facio, D.C. Tay-
lor, Phys.Rev. D8, (1973), 2729

7. W. Heisenmberg, Introduction to the unified theory of elementary

particles, Wiley, Intersgience, NY. 1966, see also Y. Nambu,

G. Jona-Lasinio, Phys.Rev. 122, (1961), 345

T.H.R. Skyrme, Proc.Roy.Soc. A 247, (1958), 260, ibid A 262,
(1961), 237

T. Marumori, Progr. Theor.Phys. 24, (1960), 331

K. Case, Phys.Rev. 106, (1957), 1316

D.K. Sen, Nuovo Cimm. 31, (1964), 660

B. Ferretti, G. Venturi, Nuovo Cimm. 35, (1964), 644

P. Bandyopadhyay, Nuovo Cimm. 38, (1965), 1912

W. Perkins, Phys.Rev. 137, (1965), B 1291, and Phys.Rev. D5 (1972},
1375

H. Sarkar, B. Bhattacharya, P. Bandyopadhyay, Phys.Rev. D11 (1975),
935 )

J. Mickelsson, The vector form of the neutrino equation and the
photon-neutrino duality, RITP Helsinki preprint, 1984

L. Biedenharn, J. Louck, Angular momentum in quantum physics,

Addison-Wesley, Reading, 1981



32

18. R. Pemmey, J.Math.Phys. 6, (1965), 1026, ibid 1031

19. R.F. Streater, I. Wilde, Nucl.Phys. B24, (1970), 561

20. K. Kademova, Int.Journ.Theor.Phys.3, (1070), 109

21. A.J. Kalnay, E. Mac Cotrina, K. Kademova, Int.Journ.Theor.Pﬁys.
7, (1973),9

22. C. Gonzalez-Bernardo, A.J. Kalnay; Int.Journ.Theor.Phys.22, (1983)
1037 s

23. Y. Freundlich, Nucl.Phys.B36, (1972), 621

24. S. Okubo, Phys.Rev.C 10, (1974),2048

25. P. Garbaczewski, J. Rzewuski, Rep.Math.Phys.6, (1974), 424

26. P. Garbaczewski, Commun.Math.Phys.43, (1975),131

27. A. Luther, I. Peschel, Phys.Rev.B9 (1974),131

28. S. Coleman, Phys.Rev.D11, (1975),2088

29. S. Mandelstam, Phys.Rev.D11, (1975),3026%

30. M. Halpern, Phys.Rev.D12, (1975),1684

31. M. Kaku, Phys.Rev.D12, (1975),2330

32. V. Baluni, Phys.Lett.90B,(1980), 407

33. R. Jackiy, C. Rebbi, Phys.Rev.Lett.36, (1976),1116

34, A.S. Goldhaber, Phys.Rev.Lett.36, (1976), 1122

35. N. Nakanishi, Progr.Theor.Phys.57,(1977),269 and Z.Phys.C4,(1980),17

36. Y. Nakowaki, Progr.Theor.Phys.72, (1984),134,ibid 152

37. P. Garbaczewski, J.Math.Phys.19,(1978),642 ibid 23,(1982),
442, ibid 24, (1983), 1806, ibid 25, (1984), 862 also Physics Rep.
36Cc, (1978), 65 '

38. V. Zhelnorovich, Sov.Phys.Dokl.24, (1979), 899

'39. A. Luther, Phys.Rev.B19; (1979),320

40. 1.B. Frenkel, Journ.Funct.Anal.44, (1981),259)

4%, P. Goddard, ﬁ. Olive, Algebras, Lattices and strings, DAMPT
Cambridge preprint, 1983 .

42. 3. Dobaczewski, Nucl.Phys.A369, (1981), 219

43. V. Zhelnorovich, Theory of spinors with applications in physics and
mechanics, (in Russian), Nauka, Moscow, 1982

44. Y. Takahashi, Phys.Rev.D26 (1982,2169



33

45. Y. Takahashi, K. Okuda, Fortschr.Physik, 31, (1983),511

46. H. Aratyn, Nucl.Phys.B227,(1983),172

47. R. Sorkin, Phys.Rev.D27,(1983),1787

48. J.L. Friedman, R. Sorkin, Commun.Math.Phys.73,(1980),161

49. M. Apostol, J.Phys.C16,(1983),5936

50. P. Garbaczewski, J.Math.Phys.24,(1983), 641

51. P. Garbaczewski, Nucl.Phys.B218,(1983),321 °

52. P. Garbaczewski, Ann.Phys.(NY),150,(1983)-22

53. A. Luther, K.D. Schotte, Nucl.Phys.B242,(1984),269

" 54, E. Witten, Commun.Math.Phys.92,(1984),455, see also Y.K.Ha, Phys.
Rev.D29,(1984),1744

55. P. Garbaczewski, Classical and quantum field theory of exactly so-
luble nonlinear systems, World Scientific, Singapore, 1985(in press)

56. P. Garbaczewski, Boson approximants for lattice Fermi systems,
J.Math.Phys. to appear

$7. P. Garbaczewski, Fermi states of Bose systems in three space di-
mensions, J.Math.?hys;to appear

58. 5.G. Rajeev, Phys.Rev.D30, (1984),...

59. R. Mirman, Nuovo Cim.18B, (1973),110

60. M.D. Girardeau, J.Math.Phys.10,(1969),1302

61. J.M. Leinaas, J.Myrheim, Nuovo Cim.37B, (1977),1

62. H.S. Green, Phys.Rev.90, (1953),270

63. J. Bardeen, L. Cooper, J. Schrieffer, Phys.Rev.108,(1957),1175

64. A.J. Coleman, Phys.Rev.Lett.13, (1964),406

65. M.D. Girardeau, J.Math.Phys.4, (1963),1096, ibid 11, (1970),681

66. H. Barentzen, Phys.Rev.B28, (1983),4143

67. H. Aratyn, Phys.Lett.113B, (1982),248



