
Piotr Garbaczewski  (Opole, Poland)

Heavy-tailed asymptotics of pdfs induced by:

- Langevin equation with additive Lévy noise

- Lévy-Schrödinger semigroups (symmetric stable driver) 

- diffusion-type processes (Wiener noise response to   

specific logarithmic potentials) 

Issues addressed:

- differences/affinites in dynamical behavior

- common asymptotic stationary probability densities

- confinement (pdf  has a finite number of moments) 

- hyper-confinement (all moments in existence)   

- (ab)normal (heavy-tailed) thermalization in Brownian motion

- transient diffusion:  gaussian into heavy-tailed pdf
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Heavy-tailed targets and (ab)normal asymptotics in diffusive  motion
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Contexts:

- Mathematics and mathematical physics:   hypercontractive, intrinsically

ultracontractive etc.  semigroups,    spectral properties of generators

(and generalized Hamiltonians), various inequalities and  eigenvalue plus   

eigenfunction estimates: lowest eigenvalue and the ground state

- polymer physics: topologically-induced „superdiffusions”  and the likes

- random search problem  (like e.g. animal foraging), Lévy flights  in     

inhomogeneous   media;  incompete knowledge of   search targets

- computer-assisted issues:  various versions of truncated Levy flights,    

cut-offs removal,  convergence in law

- optical lattices: transient diffusive  dynamics (heavy- tailed asymptotics 

in  Brownian motion),  logarithmic potentials and  „cooling forces”



3

„Rough” guide I:   fractional semigroups

(P.G. + R.O.)

Note ! 

t Є [0,T]

(cf. „ill - posed problems”)
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t Є [0,T]
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Note: fractional Kato class
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From Physica A 389, (2010), 4419,  P. G. + V. S.:
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More  math lore: (Kaleta, Kulczycki, Potential Analysis, (2010))      
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„Rough” guide II:   gradient perturbations

(P.G. + R.O.)
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Commun. Math. Phys. 271, 179–198 (2007)



Point od departure:   standard   Brownian motion
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Stationary   pdf  (Gibbs-Boltzmann form)

Fokker-Planck eq. 



Becoming parabolic - no difference in the ultimate

dynamics and asymptotics of the inferred pdf !
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Semigroup potential

pdf dynamics

Semigroup dynamics

= 0 !

F-P equation
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Note: suitable restrictons upon the semigroup potential need to be respected, to have a positive and 

continuous    semigroup  kernel function 

(actually, Gibbs-Boltzmann)
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V. Betz, J. Lörinczi,  (2003);  ground state processes,  „relative to Brownian motion” 
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Note: fractional Kato class



Targeted stochasticity idea of  I. Eliazar and J.  Klafter,   

J. Stat. Phys. 111,  739,  (2003)   
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Question: Do we have a guarantee that an invariant density may actually be 

an asymptotic  target ?  Why not by means of semigroups ?
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Targeted stochasticity

(cf.  gradient perturbations )  
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Targeted stochasticity

Transport equation for the pdf  looks ugly 
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„Topologically-” induced jump-type processes and Lévy semigroups

?
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The transport equation has the previous, semigroup-driven form   !

Quiery: „superdiffusion” ?

(note   the Gibbs-Boltzmann form of the pdf !)   we   get:

?



(V. Stephanovich –coll.) 25

Targeted stochasticity for Cauchy driver 
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Dynamics in the OUC process with:   

Targeted stochasticity  in the  time domain 



Invariant density
Langevin drift

Semigroup potential

Targeted stochasticity  in the  time domain  (confined noise) 
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Diffusive scenario !

„superdiffusion” ? Not quite…
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We scale away dimensional units and consider typical Gibbs-Boltzmann 

forms of             : with 1  and                         

Hyper-confinement

Cauchy semigroup:  false Gibbs- Boltzmann asymptotics

Compare with
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Direct semigroup inference:
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Langevin driftLévy-
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Confinement hierarchy  - case study
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Semigroup reconstruction Langevin drift reconstruction

That was  about jump-type processes. 

What about diffusion-type alternative,   with the Gibbs-Boltzmann   

ansatz, like e.g.  

V(x)  ~Trial potential:

and
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Min/max information entropy principle
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Entropy extremum principle

(x carries no dimension,                   )
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Note: the number   of moments  

grows from none at all to infinity

Given the internal energy value, we can

read out  the corresponding Lagrange

multiplier value from the figure
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Thermalization argument (limitations upon states of thermal  equilibrium)

Consider:
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To be compared with the previous (note dimensional issues we bypass !) 

Once  we   choose and 

(at  fixed energy scale )



44



45

Transient dynamics in Brownian motion



46

Exponential families of pdfs

(we have set  D =1     in )

Trial ansatz:  (i)    

(ii)
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Exponential Gauss family
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Exponential Cauchy family
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Exponential familiy for any

Select for  which an exponential family is to  come out  
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Cauchy vs Gauss:          interpolation
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Link with Tsallis entropies and  pdfs
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What was   all that about ?


