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1 The SchrSdinger problem: microscopic dynamics from 
the input-output statistics 

We invert the well developed strategy of studying dynamics in terms of probabil- 
ity densities and investigate the problem of the most likely microscopic propaga- 
tion scenario, which is consistent with the given a priori (possibly phenomeno- 
logical) input-output statistics data for the process taking place in a finite time 
interval. A subclass of solutions includes the familiar Smoluchowski diffusions. 

It is clear that a stochastic process is any conceivable evolution which we can 
analyze in terms of probability. We shall be particularly interested in situations 
when the involved probability measures give rise to densities (probability distri- 
butions which are absolutely continuous with respect to the Lebesgue measure). 
In many branches of physics ranging from deterministic (the folk lore phrase 
"studying chaos with densities" pertains to the currently fashionable topic) to 
quantum problems, densities of probability measures do naturally arise. The 
quantum issue should receive a particular attention in connection with the Born 
statistical postulate, which implies that quantum theory deals with probability 
densities. However, quite generally the stochastic analysis is disregarded against 
the pragmatic viewpoint of deducing as many experimentally verifiable or rather 
falsifiable data as possible, even at the price of manipulating with the ill defined 
or not defined at all (safe bypassing of rather fundamental difficulties) proba- 
bilistic framework. 

The main idea behind what we call the SchrSdinger problem is an attempt 
to get an insight (in fact through modeling) into an unknown in detail physical 
process with a finite time of duration, in terms of random motions consistent 
with the prescribed input - output statistics i.e. the boundary distributions for 
repeatable single particle (sample) procedures. In less specific lore, we can sim- 
ply look for a stochastic evolution (diffusion of probabilities) which interpolates 
between the boundary probability measures, in particular for the (invariant) 
measure preserving dynamics. 

Given a dynamical law of motion (for a particle as example), in many cases 
one can associate with it (compute or approximate the observed frequency data) 
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a probability distribution and various mean values. In fact, it is well known 
that  inequivalent finite difference random motion problems may give rise to 
the same continuous approximant (e.g. the diffusion equation representation of 
discrete processes). The inverse operation of deducing the detailed (possibly 
individual, microscopic) dynamics, which either implies or is consistent with 
the given probability distribution (and eventually with its own time evolution) 
cannot thus have a unique solution. 

For clarity of discussion, we shall confine our attention to continuous Markov 
processes, whose random variable X(t), t >_ 0 takes values on the real line R 1, 
and in particular can be restricted (constrained) to remain within the interval 
A C R 1, which may be finite or (semi-) infinite but basically an open set. 

In the above input-output statistics context, let us invoke a probabilistic 
problem, originally due to SchrSdinger : given two strictly positive (on an open 
interval) boundary probability distributions po(x),pT(x) for a process with the 
time of duration T >_ O. Can we uniquely identify the stochastic process interpo- 
lating between them? 

Perhaps unexpectedly in the light of our previous comments, the answer is 
known to be affirmative, if we assume the interpolating process to be Markovian. 
In fact, we get here a unique Markovian diffusion, which is specified by the joint 
probability distribution 

rn(A,B) = fA dx/B dym(x,y)  (1) 

f dvm(~, v) = po(~) 

where 

/ dx m(~, v) = pT(V) 

m(=, v) = o,(=, o) k(x, o, y, T) O(v, T) (2) 

and the two unknown (not necessarily Lebesgue integrable) functions e , ( x ,  0), 
O(y,T)  come out as solutions of the same sign of the integral identities (1). 
Provided, we have at our disposal a bounded strictly positive integral kernel 
k(x, s, y, t), 
0 < s < t  < T .  Then: 

e,(x,  t) = ] k(0, v, x, t)O,(u, 0)du (3) 

t "  
O(x, s) = ] k(s, x, y, T)O(y, T)dy 

and the sought for interpolation has a probability distribution p(x, t) = ( 0 . 0 )  
(x, t) , t  E [0, T]. 
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2 Markov diffusions solving the SchrSdinger problem: the 
role of natural boundaries 

To have a definite Markov solution in hands, we must decide what is the most 
appropriate choice for the dynamical semigroup kernel in the above. Apparently 
it is the crucial step in the construction of any explicit random propagation con- 
sistent with the boundary measure data. The reader should be warned that  the 
whole family of Levy processes and their perturbations (in the sense of Kato) is 
here allowed. The conventional Brownian diffusion and the equally conventional 
Poisson jump process are rather specialized examples in this context. 

We wish to discuss diffusive solutions only, and take for granted that  the 
traditional Fokker-Planck equation sets rules of the game for the interpolat- 
ing probability density. Then we look for the corresponding fundamental law 
of random displacements and choose the transition probability density for the 
Markovian diffusion process in the form (the so called h-transformation, invented 
long ago by Doob and Hille is here involved) 

p(y, s, x, t) = k(y, s, x, t) O(x, t) e(y,s) (4) 
with s < t. This transition density is required to come out from the forward 
Kolmogorov equation (e.g. the Fokker-Planck equation ) as its fundamental  so- 
lution (p ~ 6(x - y) as t ~ s). For convenience we simplify the whole problem 
by utilising a diffusion constant D > 0 (this choice narrows slightly the allowed 
framework): 

Otp = D A x p -  V,~(bp) (5) 

p(~, t) = / p(v, s, ~, t) p(y, s) du 

with po(x) = p(x, 0) and the drift b(x,t) given b y :  

b(x, t) = 2 0  -~0-~(x, t) (6) 

In addition we demand that the backward diffusion equation is solved by the 
same transition density (with respect to another pair of variables) 

O~p = - D A y p -  bVyp (7) 

p = p(v ,  ~, ~, t ) ,  ~ <_ t ,  b = b(v, ~) 

It implies that we deal here with a unique diffusion process, whose transition 
density is a common fundamental solution for both the backward and forward 
Kolmogorov equations. 

To understand the r61e of the integral kernel k(y, s, x , t )  in (1)-(7) let us 
assume that O(x, t) is given in the form (drifts are gradient fields as a conse- 
quence): 

O(x, t) = ± exp O(x, t) ~ b(x, t) = 2DVO(x, t) (9) 
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and insert (4) to the Fokker-Planck equation (5). Then, if p(y, s, x, t) is to solve 
(5), the kernel k(y, s, x, t) must be a fundamental solution of the generalised 
diffusion equation: 

0, k = DA~ k - 2--£5~(x, t) k (10) 

k(y ,  s, t )  - +  - y)  as t .t s 

1 .  b 2 
~(x , t )  = 2D[&~ + ~¢~-~ + Vb)] 

and to guarrantee (3), it must display the semigroup composition properties. 
Notice that (4), (9) imply that the backward diffusion equation (7) takes the 

form of the adjoint to (10): 

0, k = - D A y  k + ~D g2(y, s) k (11) 

k = k (y , s , x , t )  

If  the process takes place in-between boundaries at infinity rl = -oo ,  r~ -- 
+oo, the standard restrictions on the auxiliary potential t2 (Rellich class) and 
hence on the drift potential qS(x, t), yield the familiar Feynman-Kac representa- 
tion of the fundamental solution k(y, s ,x , t )  common for (10) and (11): 

/ k ( y , s , x , t ) =  exp[-~-  5 f2(X(u) ,u)du]dp[s,  y l t ,  x] (12) 

which integrates exp[-(1/2D) f~ f2(X(u), u)du] weighting factors with respect to 
the conditional Wiener measure i.e. along all sample paths of the Wiener process 
which connect y with x in time t - s. More elaborate discussion is necessary, if 
at least one of the boundary points is not at infinity. 

Let us notice that the time independence of f2 is granted if either ¢ is indepen- 
dent of time, or depends on time at most linearly. Then the standard expression 
e x p [ - H ( t - s ) ] ( y ,  x) for the kernel k clearly reveals the involved semigroup prop- 
erties, with H = - D A  + (1/2D)Y2(x) being the essentially self adjoint operator 
on its (Hilbert space) domain. 

We shall make one more step narrowing the scope of our discussion by ad- 
mitting diffusions (1)-(7) whose drift fields are time-independent:O,b(x, t) = 0 
for all x. We know that both the free Brownian motion and the Brownian mo- 
tion in a field of force in the Smoluchowski approximation, belong to this class 
of processes. We know also that the boundary value problems for the Smoln- 
chowski equation have a profound physical significance, albeit the attention paid 
to various cases is definitely unbalanced in the literature. It is then interesting 
to observe that the situation we encounter in connection with (1)-(7) is very 
specific from the point of view of Feller's classification of one-dimensional diffu- 
sions encompassing effects of the boundary data. Our case is precisely the Feller 
diffusion respecting (confined between) the natural boundaries. An equivalent 
statement is that boundary points rl,  r2 are inaccessible barriers for the process 
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i.e. there is no positive probability that any of them can be reached from the 
interior of (rl ,  r~) within a finite time for all X(0) = x C (rl ,  r2). 

In the mathematical  literature a clear distinction is made between the back- 
ward and forward Kolmogorov equations. The backward one defines the transi- 
tion density of the process, while the forward (Fokker-Planck) one determines the 
probability distribution (density) of diffusion. With a given backward equation 
one can usually associate the whole family of forward (Fokker-Planek) equations, 
whose explicit form reflects the particular choice of boundary data. This funda- 
mental  distinction seemingly evaporates in our previous discussion (1)-(11), but  
it is by no means incidental. In fact, according to Feller: in order that  there exists 
one and only one (homogeneous ; p(y, s, x, t) = p(t - s; y, x)) process satisfying 
-Otu = DAu+b~Tu in a finite or infinite interval r l  < x < r 2 it is necessary and 
sufficient that  both boundaries are inaccessible (the probability to reach either 
of them within a finite time interval must be zero). A general feature of the 
inaccessible boundary problems is that the density of diffusion vanishes at the 
boundaries:p(rl)  = 0 = p(r2). 

The standard (unres t r ic ted)  Brownian motion on R 1 is the most obvious 
example of diffusion with natural boundaries. It is not quite trival to construct 
explicit examples, if one of the boundaries is not at infinity. The classic example 
of diffusion on the half-line with natural boundaries at 0 and 4-oo is provided 
by the so called Bessel process. As mentioned before, diffusions with inaccessible 
barriers might have drifts which are unbounded on (rl ,  r2). Hence, our discussion 
definitely falls into the framework of diffusion processes with singular drift fields, 
which is not covered by standard monographs on stochastic processes. 

We skip the standard details concerning the probability space, filtration and 
the process adapted to this filtration and notice that a continuous random pro- 
cess X ( t ) , t  E [0, T] with a probability measure P is called a process of the 
diffusion type if its drift b(x) obeys: 

// P[ I b(X(t))l dt < co] = 1 (13) 

and, given the standard Wiener process (Brownian motion) W(t), the integral 
identity (D constant and positive) 

f X(t) = b(X(s)) ds + x / ~ W ( t )  (14) 

holds true P-almost surely (except possibly on sets of P-measure zero). It means 

that  W(t) -= (1/x/-f-D[X(t) - fo b(X(s))ds] is a standard Wiener process with 
respect to the probability measure P of the process X(t). 

For diffusions with natural boundaries, we remain within the regularity in- 
terval of b(X(t)) for all (finite) times, and (13) apparently is valid. Therefore, 
the standard rules of the stochastic It5 calculus can be adopted to relate the 
Fokker-Planek equation (7) with the natural boundaries to the diffusion process 
X(t), which "admits the stochastic differential" 

dX(t) = b(X(t)) dt + ~ d W ( t )  (15) 
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x ( o )  = xo, t e [o, 71 

for all (finite) times. The weak (in view of assigning the density po(x) to the 
random variable X(0)) solution of (15) is thus well defined. 

For stochastic differential equations of the form (15), the explicit Wiener noise 
input, because of (9) implies that irrespective of whether natural boundaries are 
at infinity or not, the Cameron-Martin-Girsanov method of measure substitu- 
tions which parallel transformations of drifts, is applicable. Even though the 
drifts are generally unbounded on (rl, r~) and the original theory is essentially 
based on the boundedness demand. It is basically due to the fact that  the prob- 
abilistic Cameron-Martin formula relating the probability measure Px of X(t )  
with the Wiener measure Pw (strictly speaking it is the Radon-Nikodym deriva: 
tive of one measure with respect to another) reduces to the familiar Feynman-Kac 
formula (with the multiplicative normalisation). The problem of the existence of 
the Radon-Nikodym derivative (and this of  the absolute continuity of Px with 
respect to Pw, which implies that sets of Pw-measure zero are of Px-measure 
zero as well) is then replaced by the standard fun'ctional analytic problem of 
representing the semigroup operator kernel via the Feynman-Kac integral with 
respect to the conditional Wiener measure. 

The Feynman-Kac formula is casually viewed to encompass the unrestricted 
(the whole of R '~ ) motions, however it is known to be localizable, and its validity 
extends also to finite and semi-infinite subsets of R 1 (Rnmore generally) as 
demonstrated in the context of the statistical mechanics of continuous quantum 
systems. More specifically, it refers to the Dirichlet boundary conditions for self- 
adjoint Hamiltonians, which ensure their essential self-adjointness (to yield the 
Trotter formula ). 

Let us emphasize the importance of (15), and of the It5 differential formula 
induced by (15) for smooth functions of the random variable X(t) .  Its first 
consequence is that given p(y, s, x, t), for any smooth function of the random 
variable the forward time derivative in the conditonal mean can be introduced 
(we bypass in this way the inherent non-differentiability of sample paths of the 
process) 

limA,10 N [ p(x, t, y, t + ZXO/(y, t + /Xt)dy - / ( x ,  t)] = (D+/(X(O, t) (16) 

= (0~ + bY + DZX)/(X(O, t) 

(Z)+(X)(t) = b(x,O X(O = x 

so that  the second forward derivative associates with our diffusion the local field 
of accelerations: 

(D~X)( t )  = (D+b)(X(t), t) = (Orb + bVb + Dz~b)(X(t), t) = VY2(X(t), t )  (17) 

with the (auxiliary potential/2(x, t) introduced before in the formula (10). Since 
we have given p(x,t) for all t E [0, T], the notion of the backward transition 
density p.(y, s, x, t) can be introduced as well 

p(x, t)p, (y, s, x, t) = p(y, s, x, t)p(y, s) (18) 
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which allows to define the backward derivative of the process in the conditional 
mean (it is quite illuminating to appply this discussion in case of the most 
traditional Brownian motion) 

1 
- / p. (y, t - At, x, t)ydy] = (D_ X)(t) = b. (X(t), t) limat~o - ~  [x 

= [b - 2DVZnp](X(t ) ,  t) (19) 

(D_f)(X(t) ,  t) = (Or + b,V - DA)f(X( t ) ,  t) 

Apparently, the validity of (17) extends to (D~X)(t) as well, and there holds 

(D2+X)(t) = (D2_X)(t) = Otv + vVv + VQ = V(2 (20) 

v(x,  t) = 1 1 -~(b.+b.)(x,t), u(x,t) = (b -  b.)(x,t) = D~Jlnp(z,t) 

/kpl/2 
Q(x,t) = 2D 2 pl/2 

Clearly, if b and p are time-independent, then (20) reduces to the identity 

v W  = V(S~ - Q) (21) 

while in case of constant (or vanishing) current velocity v, the acceleration for- 
mula (21) reduces to 

0 = v ( ~  - Q) (22) 

which establishes a very restrictive relationship between the auxiliary poten- 
tial f2(x) (and hence the drift b(x)) and the probability distribution p(x) o f  
the stationary diffusion. The pertinent random motions have their place in the 
mathematically oriented literature. 

Let us notice that (20) allows to transform the Fokker-Planck equation (7) 
into the familiar continuity equation, so that the diffusion process X(t) admits a 
recasting in terms of the manifestly hydrodynamical local conservation laws (we 
adopt here the kinetic theory lore) 

Otp = -V(pv)  (23) 

O~v + v v v  = v ( ~  - Q) 

p0(=) = p(=,0) ,  v0(=) = v(=,0) 

which form a closed (in fact, Cauchy) nonlinearly coupled system of differential 
equations, strictly equivalent to the previous (7), (17). 

In view of the natural boundaries (where the density p(x,t) vanishes), the 
diffusion respects a specific ("Euclidean looking") version of the Ehrenfest the- 
orem: 

E[VQ] = 0 ~ (24) 

d2 
-d-~E[X(t)] : E[v(X(t), t)] : E[(Otv + vVv)(X(t,  t)] : E[Vf2(X(t), t)] 
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Notice that the auxiliary potential of the form ~2 = 2Q-V  where V is any Rellich 
class representative, defines drifts of Nelson's diffusions for which E[~YQ] = 0 
E[~TY2] = -E[~YV] and the "standard looking" form of the second Newton law 
in the mean arises. 

At this point it seems instructive to comment on the essentially hydrody- 
namical features (compressible fluid/gas case)of the problem (23), where the 
"pressure" term ~TQ might look annoying from the traditional kinetic theory 
perspective. Although (23) has a conspicuous Euler form, one should notice that  
if the starting point of our discussion would be a typical Smoluchowski diffu- 
sion (7), (15) whose drift is given by the Stokes formula (i.e. is proportional to 
the external force F = -~TV acting on diffusing molecules), then its external 
force factor is precisely the one retained from the original Kramers phase-space 
formulation of the high friction affected random motion. In the Euler descrip- 
tion of fluids and gases, the very same force which is present in the Kramers 
(or Boltzmann in the traditional discussion) equation, should reappear on the 
right-hand-side of the local conservation law (momentum balance formula) (23). 
Except for the harmonic oscillator example, in view of (10) it is generally not 
the case in application to diffusion processes. As it appears, the validity of the 
stochastic differential representation (15) of the diffusion (5) implies the validity 
of the hydrodynamical representation (23) of the process. It in turn gives a dis- 
tinguished status to the auxiliary potential ~2(x, t) of (10)-(12). We encounter 
here a fundamental problem of what is to be interpreted by a physicist (ob- 
server) as the external force field manifestation in the diffusion process. Should 
it be dictated by the drift form following Smoluchowski and Kramers, or rather 
by V~2 entering the evident (albeit "Euclidean looking") second Newton law, 
respected by the diffusion ? 

In the standard derivations of the Smoluchowski equation, the deterministic 
part (force and friction terms) of the Langevin equation is postulated. What  
however, if the experimental data pertain to the local conservation laws like 
(23), and there is no direct (experimental) access to the microscopic dynamics ? 

If the field of accelerations ~752 is taken as the primary defining characteristics 
of diffusion we deal with, then we face the problem of deducing all drifts, and 
hence diffusions, which give rise to the same acceleration field, and thus form a 
class of dynamically equivalent diffusions. 

Let us analyze the second consequence of the unattainability of the bound- 
aries, which via (13) gives rise to (15). On the same footing as in case of (13), 
we have satisfied another probabilistic identity: 

// P[ b2(X(t))dt < oo] = 1 (25) 

For a diffusion X(t) with the differential (15), we know that  (25) is a sufficient 
and necessary condition for the absolute continuity of the measure P = Px with 
respect to the Wiener measure Pw. Since, for any (Borel) set A, Pw(A) = 0 
implies Px(A) = 0, the Radon-Nikodym theorem applies and densities of these 
measures can be related. It is worthwhile to mention the demonstration due to 
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Fukushima that  the mutual absolute continuity (the previous implication can be 
reversed) holds true for most measures we are interested in. 

In the notation (12), the conditional Wiener measure dp[s, y [ t, z] gives rise 
to the familiar heat kernel, if we set (2 = 0 identically. It in turn induces the 
Wiener measure Pw of the set of all sample paths, which originate from y at 
time s and terminate (can be located) in the Borel set A after time t - s: 

Pw[Al= /AdX f dp[s, ylt, x]= (26) 

where, for simplicity of notations, the (y, t - s) labels are omitted and f dr[s, y [ 
t, x]stands for the standard path integral expression for the heat kernel. 

Having defined an It6 diffusion Z(t),  (5), (15) with the natural boundaries, 
we are interested in the analogous (with respect to (26)) path measure Px 

Px[A] = /Ad  / dpx[s, y l t, x] = /A@X (27) 

The absolute continuity Px << Pw implies the existence of the strictly positive 
Radon-Nikodym density, which we give in the Cameron-Martin-Girsanov form 

dp [s, y I t, x] = exp [ b(X(u))dX(u) -- -~ [b(X(u))]2du] (28) 

Notice that  the standard normMisation appears, if we set D = 1/2 which implies 
1 DA" --. ~A in the Fokker-Planck equation. 

On account of our demand (9) and the It5 formula for O(X(t), t) we have 

2--D b(X(t))dX(t) = ~)(X(t), t) - ~(X(s),  s) - du [at~ + Vb](X(u), u) 

(29) 
so that,  apparently 

d#x~s,Y[ I t,x] = exp[4)(X(t),t) -O(X(s) , s )]  exp [ -~-~  f2(X(u),u)du] 
d# 

(30) 
with $2 = 2DOtq~ + DVb + (1/2)b ~ introduced before in (10), by means of the 
substitution of (4) in the Fokker-Planck equation. 

In case of natural boundaries at infinity, the connection with the Feynman- 
Kac formula (12) is obvious, and we have 

/ A d # X ' f A f  d#x[¢ Px[A]---- - -~ -a#= dx - -  y l t ,  x]d#[s,y[t,x] 
d# Lo' (31) 

where the second integral refers to the path integration of the Radon-Nikodym 
density with respect to the conditional Wiener measure. 

In the context of (31) and (12) we can safely assert that  the pertinent pro- 
cesses (X(t) and W(t)) have coinciding sets of sample paths. The stochastic 
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process "realizes" them merely (via sampling) with a probability distribution 
(frequency) different from this for the Wiener process W(t). 

The situation drastically changes, if we wish to exploit the "likelihood ratio" 
formulas (28), (30) for diffusions confined between the unattainable (natural) 
boundaries, at least one of which is not at infinity. In view of the absolute 
continuity of Px with respect to Pw, we must be able to select a subset of 
Wiener paths which coincide with these admitted by the process X(t), except 
on sets of measure zero (both with respect to Px and Pw). 

3 B r o w n i a n  m o t i o n  a n d  S m o l u c h o w s k i  d i f f u s i o n s  

A mathematical idealisation of the individual Brownian particle dynamics, in 
case of the free evolution in the high friction regime, is provided by the con- 
figuration space (Wiener) projection of the phase space (Ornstein-Uhlenbeck) 
process. One deals then with the stochastic differential equation 

dX(t) = x / ~ d W ( t )  (32) 

x ( 0 )  = x0 R 3, t [0, T], D > 0 

which is a symbolic expression representing an ensemble of possible instanta- 
neous values (sample locations in space), generated by the random noise W(t) 
according to a definite statistical law. Eq. (32) is known (via the stochastic It6 
calculus) to imply the Kolmogorov equation for the transition probability density 
(heat kernel here) i.e. a fundamental law of random displacements of the process, 
which gives rise to the Fokker-Planck (heat) equation for the time developement 
of the probability distribution of diffusing particles 

•tP :- DAp (33) 

p(x, o) = po(x) 

Then, p(x, t) is the probability distribution of the random variable X(t), given 
the distribution p0(x) of its initial values X(0) in R 3. 

By introducing the (irrotational, rotv = 0) local velocity field 

v = - D m V P ~ o t p  = -V(pv)  (34) 
P 

for all conceivable choices of the smooth function po(x) the heat equation, if 
combined with the assumption (34), inevitably gives rise to the local conservation 
law (the momentum balance equation in the kinetic theory lore) 

Otv + (vV)v = -1--VQ (35) 
m 

Apl/2 
Q = 2roD2 pl/2 
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vo = - D Vp0 
P0 

where m stands for the hitherto absent (albeit included in the definition of the 
diffusion constant D via the fluctuation-dissipation theorem) mass parameter 
of diffusing particles, while the potential Q is recognized to have the standard 
functional form of the familiar de Broglie-Bohm "quantum potential", except 
for the opposite sign. 

In case of an arbitrary non-symmetric distribution po(x) we have fulfilled the 
following property, which is maintained in the course of the diffusion process 
(X(t) e -n3): 

1 3 
l oi O p ~ OJ P (36) 

Pij = D2 POiOj In p 

where V = (01,02,03) and i , j ,= 1,2,3. Apparently, Pij = 5ijD2pAlnp in the 
totally isotropic case. The unconventional "pressure" term ( - ~ V Q )  in (35) is 
a distinctive characteristic of all diffusions derivable (via conditioning as exam- 
ple) from the Brownian motion proper and is a collective, statistical ensemble 
measure of momentum transfer per unit of time and per unit of volume: away 
( - V Q  corresponds to the conventional Brownian propagation with the obvious 
tendency of a particle to leave the area of the higher concentration) or towards 
(+VQ) the infinitesimal surrounding of the given spatial location x E R a at time 
t, in the very same rate. 

The conventional Brownian dynamics is a very special solution of the general 
Cauchy problem composed of the mass conservation law (33) and the momentum 
balance equation (35) with the initial data p0(x), vo(x) in principle unrelated, in 
contrast to the assumption (34). Then, we arrive at the rich family of Markovian 
diffusions, all of which are the descendants of the Brownian motion, the Brownian 
motion itself included. 

To be more specific, let us consider the boundary probability distributions 
po(x) = p(x, 0), pT(X) = p(x, T) for a stochastic diffusion process in R 3, confined 
to the time interval [0, T] 9 t. We realise that the dynamical semigroup operator 
exp(tDA) provides us with the probabilistic semigroup transition mechanism, in 
the sense that  the strictly positive semigroup (heat in our case) kernel is given: 

h(y,O,z,t) = (47rDt) -1/2 exp[ ( x - y ) 2  4--D~ ] = [exp(tDA)](y, x) (37) 

Following SchrSdinger, we ask for the joint probability distribution re(x, y) = 
O. (x, O) h(x, O, y, T) O(y, T) whose marginals f dx m(x, y) = PT (Y), f dy m(x, y) 
= po(x) coincide with the previously prescribed boundary data for the random 
propagation in the interval [0, T]. It is clear, that for arbitrarily chosen (not 
necessarily disjoint ) areas A and B in R 3, the probability to find in B a particle 
which originated from A at time 0 and was subject to the random (Brownian, 
e.g. Wiener) perturbations in the whole run of duration T, reads re(A, B) = 
L dx f .  y). 
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With the data O,(x) and OT(X) we can construct respectively the forward 
and backward diffusive propagation by means of the kernel h(y, O, x, t): 

O,O, = D AO, (38) 

&O = - D A O  

o,(x, o ) =  O,o(Et), O(Et, T) = OT(Et) , t ~ [O,T] 

where 

= J h(y, 0, Et, t) O,0(y) dy (39) 0,(Et, t) 

O(Et, t) = f h(Et, t, y, T) 0T (y) dy 

0 < t < T  

The local conservation laws (33), and (35) are satisfied by: 

p(x, t) : (00 , ) (x , t )  (40) 

v(~, t) : D v  tn ~(Et, t) 

Et ~ R 3 , t ~ [0, T] 

A complete statistical information about the most likely way the individual parti- 
cles propagate, is provided by the transition density p(y, s, x, t) = n(y, . . . .  s, x, ~ ) 8(y,,ie(='t) 
which solves the Kolmogorov (Fokker-Planck) equation associated with the (in- 
dividual particle motion recipe) stochastic differential equation 

dX( t )  = b(X( t ) , t )d t  + x / - ~ d W ( t )  (41) 

b(Et, t) = (u + v)(Et, t) 

u(Et, t) = D Vp 
P 

Notice that the standard Brownian motion comes here in a trivial way by sub- 
stituting 0, = p(Et, t), 0 = 1 for all times t E [0, T]. 

We can still have a more detailed insight into the standard Brownian dynam- 
ics. Let us consider the initial probability distribution of the random variable 
X(0) of the Wiener (Brownian in the high friction regime) process in the form 

P0(Et) = (7r0/2) -1/2 exp[-- EtA] (42) 
O/2 

Then its statistical evolution is given by the familiar heat kernel 

x 2 
p(y, s, x, t) = [47rD(t - s)] -1/2 e x p [ -  4D(t  - s) ] (43) 

Et2 
p(x, t) = [~r(O/2 + 4Dt)] -1/~ exp[- O/2 + 4Dt ] 

where s < t. 
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Let us notice that  since the density distribution is now defined for all times 
t > s we can introduce a convenient device allowing to reproduce a statistical 
past of the (irreversible on physical grounds, but admitting this specific inversion 
mathematically) 

p(y , s )  (44) p,(y ,  s, x, t) = p(y, s, T) 

with the properties (set s = t - At) 

p , ( y , s , z , t ) p ( x , t ) d x  = p (y , s )  s <_ t (45) 

a s + 4Ds  4Dx  
y p . ( y , s , x , t ) d y = x  c ~ + 4 D  t - x  a ~ + 4 D t A t = x  - b,(~c,t)/kt 

where b.(x ,  t) = - 2 D V p ( x ,  t ) lp (x ,  t) and quite trivially b(x, t) = 0. Notice fur- 
thermore that  by defining v (x , t )  = 1 ~b,(x,  t), as a consequence of the heat equa- 
tion we have satisfied (pv)(x ,  t) = f p(y, s, x, t )po(y)vo(y)dy  and equations (38). 

Our previous discussion was entirely devoted to the free evolution, and it is 
quite natural to address the issue of the effects of external force fields on the 
random propagation. If to accept the high friction regime, like in case of (33), 
we should consider the Brownian motion in a field of force, in the Smoluchowski 
approximation. 

The Fokker-Planck equation governing the time developement of the spatial 
probability distribution in case of the phase space noise with high friction, in 
the Smoluchowski form reads 

Otp = D A p  - V(bp) (46) 

1 F(x) ,  p0(x) = p(x, 0) b(x,t) = 

where fl is the friction constant and the external force we assume to be conser- 
vative 

F(~) = - W ( x )  (47) 

It is well known that the substitution 

p(x, t) = 0, (=, t) exp [ -  ~(=)] (48) 
2Dfl ~ 

converts the Fokker-Planck equation into the generalised diffusion equation for 
e , (x , t )  

ate. = D Ae.  V(x) 0, (49) 
2roD 

where (the mass m was here introduced pe r  force, but with a very concrete 
purpose of embedding our discussion in the formalism of the "Euclidean quantum 
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mechanics", the name coined by J. C. Zambrini for a natural extension of the 
standard nonequilibrium statistical physics) 

V(x) = ' ~ F ~  -ff(~-~ + D V F )  (50) 

Since F 2, D,/3 are positive, a sufficient condition for the auxiliary potential V(x) 
to be bounded from below (its continuity is taken for granted) is that  the source 
t e rmg(x)  in the familiar Poisson equation 

V F  = - A ¢  = g (51) 

is bounded from below: g(x) > -c ,  c > O, c is finite. Under this boundedness 
condition, we know that the equation (49) defines the fundamental semigroup 
transition mechanism underlying the Smoluchowski diffusion. Indeed, by (49) we 
have in hands the well defined semigroup operator e x p [ - t ( - D A  + V/2mD)], 
whose integral kernel is a strictly positive solution of (49) with the initial con- 
dition limt--,0 h(y, O, x, t) = 5(y - x). 

The kernel is defined by the Feynman-Kac formula (in terms of the condi- 
tional Wiener measure, which sets an obvious link with the Brownian propaga- 
tion). It is immediate that 

O,o(x) = po(x) exP~2Dfl~ (52) 

t 
0,(x, t) = J h(v, 0, x, t)0,(y, O)dv 

while, apparently 

~(~) f O(x,t) = exp[-  2--D~ ] = h(x, t ,y ,T)OT(y)dy = OT(x) (53) 

for all t E [0, T]. Indeed 0(x, t), (53) solves 

V 
OtO = - DAO + ~mD 0 (54) 

where OtO = 0 and 

. (v~,) ~ A ¢ .  e _  v e (55) 
D A 0  = [ 4-b--~- ~ ] 2roD 

as should be. Since the deterministic evolution governed by the Smoluchowski 
equation gives rise to a definite terminal (in the interval [0, 7"]) outcome pT(x) 
given p0(x), a straightforward inspection demonstrates that  the Schrhdinger sys- 
tem is solved by 0.0(x) and OT(x) with the kernel h ( V ; y , s , x , t ) .  As a con- 
sequence, we have completely specified the unique Markov-Bernstein diffusion 
interpolating between P0 (x) and PT (X), which is identical with the Smoluchowski 
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diffusion itself. We know here the transition probability density (e.g. the law of 
random displacements modified by the presence of external force fields) 

p(y, ~, :~, t) = h(y, ~, x, t) 0(:~, t) 
o(y,s) (56) 

which is responsible for the most likely particle propagation scenario. We have 
also automatically satisfied the local conservation laws 

o , v  = - v(p~) (57) 

a , v  + (vv)v = l v ( v  - Q) 
m 

p(x, 0) = p0(~), v(~, 0) = v0(x) 

where p(x, t), v(x, t) are defined by the formula (40). Notice that in the detailed 
derivation, the above momentum balance equation does not appear directly, but 
in the indirect way by taking the gradient of the much weaker (Hamilton-Jacobi) 
identity 

V - q = 2roD[OrS + D(VS) 2] (58) 

s(~, t) = ~ In o--: 

In our case, apparently 

q~ - lnp) v(x, t) = D V ( - - ~  = - ~ w -  DY~ ,., ( 8 9 )  

1 
O~p v[~(v¢)p] + D~p 

to be compared with the Smoluchowski equation. 
The above discussion admits various generalisations. As example, by choos- 

ing a definite (reference) Smoluchowski force potential and then the auxiliary 
(induced) one V, we have fixed the strictly positive kernel h(V; y, s, x, t). By 
playing with different choices of the boundary data P0, PT (unrelated to the 
initially considered) and seeking solution of the Schrhdinger system, we can gen- 
erate a rich class of the (conditional) random motions, all of which are governed 
by the local conservation laws with the potential V. However, their forward 
drifts b(x, t) would have the functional form completely divorced from the sim- 
ple Smoluchowski expression. 

We can as well start from the general Cauchy problem with the completely 
arbitrary V (except for being continuous and bounded from below). Then, the 
corresponding Smoluchowski diffusion can be reproduced only if the potential 
allows to decouple from the defining identity, the force field F. 
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4 Q u a n t u m  m e c h a n i c a l  g a m e s :  s c h r S d i n g e r  w a v e  

m e c h a n i c s  a s  t h e  t h e o r y  o f  m a r k o v  d i f f u s i o n  p r o c e s s e s  

Now, we shall analyze some consequences of the primordial for quantum the- 
ory, albeit frequently underestimated statistical postulate due to Max Born: the 
identification of the squared modulus of the SchrSdinger wave function with the 
probability density ("of something if anything", but undoubtedly of a certain 
probability measure) is what makes quantum mechanics a part of the theory of 
stochastic processes, and in particular of Markov diffusions. 

4.1 A specific example  of  the  invar iant  p robab i l i t y  measure :  
m e a s u r e  preserv ing  s tochast ic  dynamics  

We indicate at this point certain amusing features of the harmonic attraction. 
Let us consider the Sturm-Liouville problem on L2(R 1) 

¢d2x 2 
- D A ¢  + --~--~-¢ = c¢ (60) 

The substitutions:c~ 4 = w2/4D 2, A = c/w, x = (/c~ give rise to the equivalent 
eigenvalue problem 

1 ~2 
( -~A~  + -~-)0 = -A¢ (61) 

= = ¢ ( x )  

with the well known solution (norma!ised relative to x) 

1 1 
An = n +  ~ +-+ Cn = ( n +  ~)w, n = O, 1 , 2 , . . .  

1/2 ~ 
en(x) = ¢,~(() = ( ~ )  exp[--~-] H,~(~) (62) 

H0 = 1, Ha = 2~, H2 = 2(2~ ~ - 1), Ha = 4~(2~ 2 - 3),.. .  

Except for n = 0 the solutions Cn(~) are not positive definite and change sign 
at nodes. We have 

n = 0, ¢ 0 ( x )  > O, x E ( -oo,+oo)  

n = 1, ¢1(x) > 0, x E (0,+cx)) 

¢1(X) < 0, X C (--OO, 0) 

n = 2, ¢2(x) > 0, x E ( - ~ , - 1 / v ~ )  U (1/x/'2, +co) 

¢2(x) < 0, x E ( - 1 / v ~ ,  ÷l /v/2)  

and so on. It is convenient to continue further considerations with respect to the 
1 rescaled ~ = otx variables, in view of the form - ~ / ~  + 2 = H of the Hamiltonian 

predominantly used in the mathematical physics literature. To proceed in this 
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1 and thus utilize notational  convention it is enough to set x ---* 1̀ and D ~ 
b = V O / O , £ 2 =  1 2 + v b ) , w =   vb+ ½z b 

Although we need O, O, of the same sign, and p(x) to be strictly positive, 
we can first make a formal identification O = O. = ¢~, n - 0, 1,2, ... and notice 
that  

1̀2 1 
n = 0, b0 = - ` 1  ~ B 0 -  

2 2 

1 ~2 3 
,~ = 1,  b~ = ~ - - ` 1  ~ = 

5 - -  

4`1 ,I 2 5 
n=2,b2-2`12 1 ` 1 ~ 2 -  2 2 

Obviously V~2n = 1̀ for all n. Irrespective of the fact that each of bn, n > 0 shows 
singularities, the auxiliary potentials are well defined for all x, and for different 
values of n they acquire an additive renormalisation -An = - ( n  + ½). 

The case of n = 0 is a canonical example of the Feynman-Kae integration, 
and the classic Mehler formula involves the Cameron-Martin-Girsanov density 
as well. 

1 Indeed, the integral kernel  [exp(-Ht)] (y ,  x) = k(y, O, x, t) for H --- - 5 / k  + 
(½x 2 - ½) is known to be given by the formula: 

x2 _ y2 (e-t  k(y, 0, X,~) ---- 71"--1/2(1 -- e--2t) -1/2 exp[ 2 Y-~-- x)2] (63) 

f k(y, o, t)o(y),ty 
where the integrability property 

x2 y2 
f k(y, 0,  ,tlexpI   -]dy = 1 

is simply a statement pertaining to the transition density of the homogeneous dif- 
fusion, which preserves the Gaussian distribution p(x) = (OO,)(x)  = : ~  exp(-`12). 

4.2 T h e  i m a g i n a r y  t i m e  s u b s t i t u t i o n  as a m a p p i n g  b e t w e e n  t w o  
f am i l i e s  o f  d i f fus ion  p r o c e s s e s  

Let us invoke the analytic continuation in time concept, which is a notorious tech- 
nical tool to pass to the so called Euclidean framework whenever any problems 
with the mathematically rigorous processing appear in the context of quantum 
theory. In fact it is also well known that the easiest way to generate explicit exam- 
ples of Markov (actuMly Markov-Bernstein) diffusions is by analytic continuation 
of solutions of the SchrSdinger equation. For V continuous and bounded from 
below, the generator H ~ - 2 m D 2 A  + V is essentially selfadjoint, and then the 
kernel h(x, s, y , t )  = [ e x p [ - ( t -  s)H]](x, y) of the related dynamical semigroup 
is strictly positive, so the previous Markov-Bernstein process considerations do 
follow immediately for time-independent potentials V. On the other hand it is 
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quite traditional to relate this dynamical semigroup evolution to the quantum 
mechanical unitary evolution operator exp(iHt) by the imaginary time substi- 
tution t --+ it. In the most pedestrian and naive interpretation of this fact, one 
might be tempted to invent the concept of "diffusion process in the imaginary 
time". Actually nothing like that is here allowed, and if taken seriously, becomes 
self-contradictory. 

The routine illustration for the imaginary time transformation is provided by 
considering the force-free propagation, where apparently the formal recipe gives 
rise to (one should be aware that to execute a mapping for concrete solutions, 
the proper adjustment of the time interval boundaries is indispensable): 

Then 

to te  = - D A ¢  ~ OtO. = DAO, 

it -~ t (65) 

[ 
¢(x, t) = [ f / 2  exp(iS)](x, t) = J dx'G(x - X t , t )¢(x  I, 0) 

G(x - x', t) = (4~riDt) -1l~ exp[ (x - x') ~ g b 7  ] (66) 

o-:(=, t) = f d 'h(x - o) 

h ( x - x ' , t ) = ( 4 ~ r D t )  H2exp[ (X~D~ ] - x ' )  2 

where the imaginary time substitution recipe 

h ( x -  x ' , i t )  = G ( x -  x ' , t ) ,  h ( x -  x ' , t )  = G ( x -  x ' , - i t )  (67) 

seems to persuasively suggest the previously mentioned "evolution in imaginary 
time" notion, except that one must decide in advance, which of the two consid- 
ered evolutions:the heat or SchrSdinger transport, would deserve the status of 
the "real time diffusion". 

At this point let us recall that given the initial data 

x 2 
¢(X, 0) = (7t"O/2) -1/4 exp (-- ~2~2 ) (68) 

the free SchrSdinger evolution Ore = -DZS¢ implies 

o~ 2 
¢(x,  t) = (--~-)(a 2 + 2iDt) -112 exp [ 

with ( ~ ( D + D _  + D_D+)X( t )  = 0 applies): 

x 2 

2(0/2 + 2iDt)  ] 
(69) 

0/ X2~ 2 

p(=, t) -- I¢(=, 012 -- [~.(0/4 + 4D2t2)]a/2 exp( - 0/4 + 4D2t ~ ) 
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f 
= J ;(y, 0,., t>(y, O)dy (70) 

2D ~rt]2 
p(y ,O,z , t )  = (4~rDt)-l/2 exp[ - ( z -  y -  --~,oj ] 

4Dt 
where P0/, 0 , . ,  t) is the (distorted Brownian) transition probability density for 
Nelson's diffusion derivable from ¢(z,  t). On the other hand we can straightfor- 
wardly pass to 

_ o~  2 x 2 
~ ( x , - i t )  = 0,(x, t) = (-~)t/4(c~2 + 2Dt) -1/2 exp [ -  2(a2 + 2Dr)] (71) 

Let us confine t to the time interval [ -T /2 ,  T/2] with D T  < a s. Then we arrive 
at 

OrÜ, : DAO, 

Ot-O = - D A 0  (72) 

T T 
< t <  2 -  

-0 = (--~-) -- 2Dr) -1/2 exp[ 2(a2 _ 2Dt,  ]) 

where 

_ _  OZ2X 2 
°~2 11/2 e x p [ -  (73) -fi(., t) = (00,)( . ,  t) = [~.(a4 _ 4D2t2) J ~4 _ 4D2t2] 

with the interesting, and certainly unpredictable if to follow the traditional Brow- 
nian intuitions, outcome: 

-fi(,, - T / 2 )  = -fi(x, T/2)  (74) 

However strange the probabilistic evolution appropriate for (74) would seem, it 
does not need an imagination effort, to realize that it refers to a conditional 
Brownian motion (in fact the Brownian bridge with smooth ends) for which the 
acceleration formula D~.X = D2_X = 0 holds true. Here the intermediate prob- 
ability density (73) can be represented as the conditional transition probability 
density formula (identifiable as the Bernstein transition density) 

h(O, - ~ ,  x, t)h(x, t, O, ~) (75) 
-fi(x,t) = P ( x l , t l ; x , t ; x 2 ,  t2) = h ( 0 , _ a , 0 ,  c 0 

.2 
h ( 0 , - a ,  x, t)  = [4rD(t + c~)]-l/~exp( 4D(t + a) ) 

Clearly nothing like the "imaginary time diffusion" is here involved. We have 
rather executed a mapping from one reM time diffusion to another, with the in- 
com2atible dynamical principles (previously introduced microscopic conservation 
laws) at work. Since the Schr5dinger equation plays here the role of the linear 
problem associated (linearisation) with the nonlinear diffusion equations, there 
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are not the diffusions themselves which are related directly by the Wick rotation. 
The link can be established on the auxiliary (for the Nelson diffusion) level of 
description:the corresponding linear problem (SchrSdinger equation which itself 
generates nonlinear diffusions) can be mapped into the linear diffusion prob- 
lem, with all the reservations concerning the proper choice of the time interval 
boundaries. 

4.3 Free  Sch rSd inge r  d y n a m i c s  as t h e  d i f fus ion p r o c e s s  

By defining 

p(y, O, x, t) = (41rDt) -1/2 e x p [ -  (x - y + 2Dry/a2) 2 ] 
4Dr 

we realise that 

p(y, O, x, t)(Tro~2) -1/2 exp(-y2 /o~2)dy = 

X2~ 2 
[-- 3 p(z, t) [~(~4 + 4D2t2)]~/~ exp ~4 + 402t~J  

and 
/p(y,O,x,t)[~(TrOl2)_l[2 ] y2 exp[-- ~--ff]dy = 

2D(a2"~-4 + 4--D-~- 2Dt)x p(x," t) = -b(x,  t)p(x, t) 

where evidently 

(76) 

(77) 

(78) 

v(z, t) = b(x, t) - DVp(x,  t)/p(x, t) (79) 

solves local conservation identities (laws) with V = 0 and via the familiar 
Madelung transcription of the free Schr6dinger dynamics lot ¢(x,  t) = - D A ¢ ( x ,  t) 
wi th  ¢ = e x p ( R  + iS), p = e x p ( 2 n ) ,  v = 2 D V S  the link between the Brownian 
type diffusion and the quantum mechanical evolution is established. 

However, it seems instructive to have a detailed demonstration that the per- 
tinent dynamics is a well defined solution of the SchrSdinger problem as formu- 
lated in Section 1. To simplify considerations we shall rescale the variables so 
that effectively D = 1 appears everywhere. Certainly, we deal with the evolution 
associated with the continuous mapping: 

~2 t2)] (80) po(x) = (27r)- l /2exp[-  ] , p(x,t)  = [2~r ( l+ t2 ) ] - l /2exp[ -2 (  1 + 

We have defined the transition probability density effecting the "quantum job" 
from the initial time instant 0 till any finite time t. However, our diffusion process 
is definitely not homogeneous in time, hence the fundamental trasport mech- 
anism for arbitrary times is very different from what the previously utilized 
formula might suggest. Indeed, let us consider : 

(x - c y )  ~ . 
p(y, s, x, t) = [4Tr(t - s)] -1/2 exp[ at ~)5-'[~UVJ (81) 
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= c(s,4)= [(1 - t )  ~ + 2s]1/~ 
]+s2 

which by setting c(0, t) = 1 - t  reduces to the previously considered p(y, O, x, t) = 
(47rt)_1/2 x - y - y t  2 . • 1 - t  exv[-(  4, ) ]" One can eas,ly calculate the drift ~(~,t) = -]+,9~ 
following the standard stochastic methods and check the validity of both the 
continuity and momentum balance equations. It is however more interesting 
to realize that by taking ¢(x, i) = exp(R + iS) whereR(x, t), S(x,  t) are real 
functions, we can as well introduce the new real functions 0 = exp(R + S), 0. -- 
e x p ( R -  S) such that : 

R(x,  t) = - ln2~-(1 + t 2) 4(1 + t 2) (82) 

x 2 t 1 
S(x , t )  - 4 1+ 42 ~arctan t 

implies 

O(x, t) - - - -  [27r(1 -4- t2)] -1/4 exp( 

O,(~, 4) = [2~(1 + ?)]-~/4exp( 

where, strikingly there holds: 

x ~ 1 - t  1 
4 f_~_~)exp(--~arctan t) 

x 2 l + t  1 
4 1 + t21exp~_~arcta t t) 

(83) 

00 = -Zk0 +/20 (84) 

00. = A0. - ~20. 

~(x ,  t) -- x2 1 -- 2/kPl/2 
2(1 + t2) 2 1 + t 2 pa/2 

Moreover, the function h(y, s, x, t) = p(y, s, x, t) °(u'') is a fundamental solution 0(~,t) 
of the above equations: 

/ h(y, s, x, t)O. (y, s)dy (85) O. (x, t) 

2 
h ( y , s ,  x , t )  [41r(t - 1 /2  1 -4- t z 1/4 1 = - s)] ( 1 + s 2 ) exp -~(arctan t - arctan s) 

( x - c y )  2 y2 1 - s  x 2 1 - t  
exp[- ~(~-_-~ 4 1 + s~ + 4 1 + 4~] 

Although the form of the strictly positive semigroup kernel h(y, s, x, t) does not 
look that  promising,it is possible to check through a direct (albeit a little bit 
involved) computation that the dynamical semigroup implemented identity 

~1-~---[1 - f h(y, s, x , s  + As)dx] = ~2(y, s) (86) lim 
A s---~0 L58 J 

is valid, as expected from the fundamental solution of the generalized diffusion 
equation. All probabilistic features characteristic for solution of the SchrSdinger 
problem were there-by recovered. 

269 



Piotr Garbaczewski and Robert Olkiewicz 

A c k o n w l e d g e m e n t  

The talk was delivered by the first named author with support coming from the 
KBN research grant No 2 P302 057 07 

R e f e r e n c e s  

[1] E'Schrfdinger, Ann. Inst. Henri Poincare, 2, 269 (1932) 
[2] B. Jamison, Z. Wahrsch. verw. Geb. 30, 65 (1974) 
[3] J.C. Zambrini, J. Math. Phys. 27, 3207 (1986) 
[4] R. Carmona, in:Taniguchi Symp. PMMP, Katata 1985, Academic Press, Boston, 

1987 
[5] M. Nagasawa, Prob. Theory Relat. Fields, 82, 109 (1989) 
[6] P. Garbaczewski and J. P. Vigier, Phys. Rev. A 46, 4634 (1992) 
[7] P.Garbaczewski, Phys.Lett. A 172, 208 (1993) 
[8] P.Garbaczewski, Phys.Lett. A 178, 7 (1993) 
[9] Ph. Blanchard and P. Garbaczewski, Natural boundaries for the Smoluchowski 

equation and affiliated diffusion processes, Phys. Rev. E, (1994), in press 

270 


