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Abst rac t :  The traditional Gaussian framework (Wiener process as the "free 
noise", with the Laplacian as noise generator) is extended to encompass any 
infinitely divisible probability law covered by the Ldvy-Khintchine formula. It 
implies a family of random environment models (of the fluctuating medium) 
governed by the generally non-Gaussian "free noises". Since the so called rel- 
ativistic tIamiltonians [V[ and ~ / - A  + m 2 - m are known to generate such 
laws, we focus on them for the analysis of probabilistic phenomena, which 
are shown to be associated with the relativistic quantum propagation once an 
analytic continuation in time of the corresponding holomorphic semigroup is 
accomplished. The pertinent stochastic processes are identified to be spatial 
jump processes. 

The SchrSdinger equation and the generalized heat equation are connected 
by analytic continuation in time, known to take the Feynman-Kac (holomor- 
phic semigroup) kernel into the Green function of the corresponding quantum 
mechanical problem. For V = V(x),  z E R, bounded from below, the genera- 
tor H - -2mD2/k  + V is essentially selfadjoint on a natural dense subset of 
n 2, and the kernel k(z, s, y, t) = [ e x p [ - ( t -  s)H]](x, y) of the related dynamical 
semigroup is strictly positive. The quantum unitary dynamics e x p ( - i H t )  is a 
final result of the analytic continuation. 

As repeatedly emphasized [1, 2, 3, 4, 5], any temporal  evolution that  is an- 
alyzable in terms of a probability measure may be interpreted as a stochastic 
process. In view of the Born statistical interpretation postulate for quantum 
mechanics, the analytic continuation in time induces a class of probability mea- 
sures, namely, consider p(x, t) = [¢(z, t)[2 as the density of a probability measure 
associated with a given solution ¢(x,  t) of the SchrSdinger equation. Then, it is 
possible to address the problem of that  stochastic dynamics which would be 
either (i) measure preserving or (ii) induce the t ime evolution of the measure 
proper. Keep in mind that  the SchrSdinger equation itself is not a genuine partial  
differential equation of probability theory; rather it is the Born postulate which 
embeds the unitary evolution problem into the probabilistic framework. 
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A simple illustration of the analytic continuation in time is provided by 
considering the force--free propagation, where the formal recipe gives rise to 
the equations of motion (one should be aware that to execute a mapping for 
concrete solutions, the proper adjustment of the time interval boundaries is 
indispensable): 

i 0 ,¢  = - D A ¢  , ato,  = D A O ,  , 

iOt¢ = D A ¢  , OtO = - D A O  , (1) 

Then 

it --* t . 

,~(,~,t) : [p~" exp(iS)] (~, , ) : / , t ,~ 'G(~-  ~',t)~,(x', 0), 

C(~,- ~',0 = (4~iD0 -~z~ exp [. (~-=~)~] 4imt j '  (2) 

,.(x,,) = f a ,k(x- o), 

k ( x -  ~ ' , t )  = (4 rDt )  1/2 exp 4-D~ J ' 

The description in terms of the time adjoint pair of equations is not accidental 
and reflects the Markov property of probabilistic solutions of the associated 
Schrhdinger problem: find an interpolation between the given pair of boundary 
(for the process on a finite fixed time interval) probability distributions. 

Strictly positive semigroup kernels generated by Laplacians plus suitable po- 
tentials are very special examples in a surprisingly rich encompassing family. 
First of all, the concept of the "free noise", normally characterized by a Gaus- 
sian probability distribution appropriate to a Wiener process, can be extended 
to all infinitely divisible probability distributions via the Ldvy-Khintchine for- 
mula. It expands our framework from continuous diffusion processes to jump or 
combined diffusion-jump propagation scenarios. All such (Ldvy) processes are 
associated with strictly positive dynamical semigroup kernels. 

Remark :  Apart from the wealth of physical phenomena described in terms of 
Gaussian stochastic processes, there is a number of physical problems where the 
Gaussian tool-box proves to be insufficient to provide satisfactory probabilis- 
tic explanations. Non-Gaussian L~vy processes naturally appear in the study 
of transient random walks when long-tailed distributions arise [7, 8, 9]. They 
are also found necessary to analyze fractal random walks [10], intermittency 
phenomena, anomalous diffusions, and turbulence at high Reynolds numbers 
[7, 12, 11]. 

Let us consider Hamiltonians of the form H = F(/~), where ih = - i V  stands 
for the momentum operator and for - c o  < k < +co, F = F ( k )  is a real 
valued, bounded from below, locally integrable function. Then, exp ( - tH)  = 
f+_~ e x p [ - t F ( k ) ] d E ( k ) ,  t > O, where dE(k )  is the spectral measure of/3. 
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Most of our discussion will pertain to processes in one spatial dimen- 
sion, and let us specialize the issue accordingly. Because (E(k)f)(x) = 

k 
1 ~ f exp(ipx)](p)dp, where ] is the Fourier transform of f,  we learn that  

[exp(-tH)] f(x) = exp(-tF(k))dE(k (x) = 

1 / -tF(k) exp(ipx)](p)dt dk 
X/~-~_ oo exp = (3) 

+co 

1 exp(-tF(k))exp(ikx)](k)dk= exp(-tF(p))f(p) (x) 
- - C O  

where the superscript V denotes the inverse Fourier transform. 
Let us set k~ = ~[exp(-tF(p))l  v , then the action of e x p ( - t H)  can be given 

in terms of a convolution: e x p ( - t H ) f  = f • k~, where ( f  * g)(x) := f n  g(x - 
z)f(z)dz. 

We shall restrict consideration only to those F(p) which give rise to positivity 
preserving semigroups: if F(p) satisfies the celebrated L6vy-Khintchine formula, 
then k, is a positive measure for all t > 0. The most general case refers to 
a contribution from three types of processes: deterministic, Gaussian, and an 
exclusively jump process. We shall concentrate on the integral part of the L6vy- 
Khintchine formula, which is responsible for arbitrary stochastic jump features: 

+oo 
r ipy ] F¢p) = - / lexp¢ipy)- 1 -  1 + y2 j v(dy) (4) 
l= 

- - 0 0  

where u(dy) stands for the so-called L6vy measure. 
The disregarded Gaussian contribution would read F(p) = p2/2. In this 

case we know in detail how the analytic continuation in time of the Laplacian 
generated holomorpic semigroup induces a mapping to a quantum mechanical 
(since the Schr5dinger equation is involved) diffusion processes [5, 2, 3]. 

Our further attention will focus on two selected choices for the characteristic 
exponent F(p), namely: Fo(p) = IPl and Fro(p) = ~/p2 + m 2 _ m, m > 0, where 
we have chosen suitable units so as to eliminate inessential parameters. (The 
relativistic Hamiltonian is better known in the form X / m 2 c  4 -~- c2p  2 --  m c  2 where 
c is the velocity of light.) 

The respective Hamiltonians (semigroup generators) H0, Hm are pseudod- 
ifferential operators. The semigroup kernels k °, k~ n in view of the "free noise" 
restriction (no potentials, will be defined in below) are transition densities of the 
jump (L~vy) processes regulated by the corresponding L6vy measures v0(dy), 
um(dy). It is instructive to notice that  as in the case of Gaussian derivations 
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(1),(2), the pseudodifferential analog of the Fokker-Planck equation can be in- 
troduced. Namely, as a consequence of [exp(-tH)-~](z) = -~(z, t) and in view of 
the identification F(p --+ - i V )  := H we arrive at 

Fo(p) ===~ 0~-~(~, t) = -IVI~(~, t) (5) 

o r  

Fm(p)==~Ot-fi(z,t)-- [X/-A +m2-m]- f i (x , t )  (6) 

respectively. 
Although the pseudodifferential generator of the semigroup implies that  the 

Fokker-Planck equation is no longer exclusively differential but an integro- 
differential equation, each solution ~(x,t) in the present case is nevertheless 
a solution of a partial differential equation of higher order. Specifically, the re- 
spective partial differential equations are of the second order, see[4]. Our two 
semigroups are holomorphic, hence we can replace the time parameter t by a 
complex one ~ = t + is, t > 0 so that exp ( -~H)  = fR e x p ( - ~ r ( k ) )  dE(k).  Its 
action is defined by 

[ [exp(-~H)] f = ( f  exp(-~rF) = f * k~, . (7) 

Here, the kernel reads k~ = 7~.2~[exp(-o'F)]V. Since H is selfadjoint, the limit 

t 1. 0 leaves us with the unitary group exp(-isH), acting in the same way: 
[exp(-isH)]f = []exp(-isF)] v, except that  now ki, := ~ [ e x p ( - i s F ) ]  v in 

general is not a measure. In view of unitarity, the unit ball in L 2 is an invariant 
of the dynamics. Hence density measures can be associated with solutions of the 
Schr5dinger pseudodiferential equations: 

Fo(p) :=~ iOtC(z, t) = IVlC(z, t) (8) 

o r  

Fro(p) = = + m2 _ m] 
P 

(9) 

provided with the appropriate initial data functions ¢(x, 0). 
An obvious consequence is that the corresponding partial differential equation 

of the second order takes on a familiar relativistic form 

Fo(p) ~ [ ] ¢ ( x , t ) : =  ( - A  + A , )¢ (z , t )  = 0 (10) 

while after setting ¢(z , t )  = ¢(x,t)exp(imt),  we arrive at the Klein-Gordon 
equation: 

Fro(p) =:~ (D + m2)¢(z, t) = 0 (11) 

where the D'Alembert operator [] = - A  +/x ,  replaces its Euclidean counterpart 
- - [ 3  E . 

We have thus reached a point, at which our major question can be precisely 
stated: 
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What are the stochastic processes consistent with the probability measure 
dynamics p(x, t) = [¢(z, 0[ 2, determined by the pseudodifferential equations (8) 
and (9)? 

We have chosen two rather special pseudodifferential counterparts of the 
Laplacian guided by two reasons: (i) their similarity on analytic grounds (the 
same criteria [13] for the existence of the bound state spectrum if summed with 
suitable potentials, (ii) the claim of Ref. [14] that the pertinent stochastic process 
in the mass m > 0 case actually displays the Markov property. 

If the Markov property would hold true for the relativistic Hamiltonian gen- 
erated dynamics, we would be able to repeat almost all steps of the previous, 
SchrSdinger picture, quantum dynamics analysis [1, 2, 3]. However, the situation 
is not that simple, and the argument of [4] excludes the Markov property, in all 
nonstationary situations, in a flat contradiction with general statements by De 
Angelis [14]. 

Let us introduce some probabilistic notions, which will tell us how to work 
with pseudodifferential operators. We shall notice that for explicit computational 
purposes, the Cauchy generator IV[ is much more suited than the m > 0 rela- 
tivistic Hamiltonian. It is a real disadvantage when dealing with L~vy processes 
that rather limited number of concrete examples is available, in contrast to the 
wealth of the general theory. 

The L~vy-Khintchine formula tells us that the action of the Hamiltonian 
H = F ( - i V )  on a function in its domain can be represented as follows: 

J[ ( H f ) ( z )  = - f ( x  + y ) -  f(m) 1 + y2 j u(dy) (12) 
R 

It is important to observe that for the "free noise" processes whose semigroup 
generators are [V[ and x / - A  + m 2 -  m we do know explicitly their kernels (tran- 
sition probability densities) and the involved L~vy measures, as well as about 
the extension of the Feyman-Kac path integral construction of the semigroup 
kernels to these particular Ldvy processes [13], in case of arbitrary space dimen- 
sions. Therefore we feel free to use the Feynman-Kac kernel notion instead of 
the semigroup kernel. 

For the Cauchy process, whose generator is [V[, we deal with a probabilistic 
classics: 

1 t 1 t - s  
~(x,t) - 7r t 2 + x --------~ :=~ k ° ( y ' s ' x ' t )  - - (13) 

- ( t  - + - 

O < s < t  

[/pX(t)] ) := / exp(ipz)-fi(z, t )dz = exp [-tF0(p)] = exp(-lplt ) ( e x p  

R 

The characteristic function of k°(y, s, z, t) for y, s fixed, reads exp[ ipy - [p[ ( t - s ) ] ,  
and the L~vy measure needed to evaluate the L~vy-Khintchine integral reads: 

vo(dy) := l im [ l k°(O, O, y, t)] dy = --dY (14) 
t lo Lr, j ~-y2 
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In the case of the relativistic generator x / - A  + m 2 - m ,  formulas determining 
the stochastic jump process are much less appealing: 

-~(z,t) = m texp(mt)  Kl(rnv/-~x 2 + t2 ) (15) 
~r V ~  + t  2 

[exp(-(t - s)Fm(-iV))]  (x - y) = kin(y, s, x, t) := ~(x - y, t - s) 

m 

~,.~(dy) - ~ lYlK~(mlYl )dy  

where Kl(z)  is the modified Bessel function of the third kind of order 1. 
We are interested in acting with the pseudodifferential generators H = 

F ( - i V )  on functions in the exponential form (recall the familiar Madelung pro- 
cedure in the gaussian case) f (x ,  t) = exp ~(x, t): 

(Hexp~)(x) = - / [ e x p  ~(x + y) - exp , (x)  - Y(/i'(x)---ex--P-P 4)(x)] 
1 + y2 j u(dy) = 

R 

- exp~(x) f [exp(~(x q: y ) -  @(x)) - 1 
R 

1 4- y2 J .(dy) (16) 

where #'(x) = V#(x). Since (H#)(x) = - fR[#(x + y) - #(x)  - y~'(x)/(1 + 
y2)]v(dy), we can make a safe rearrangement of (16): 

( H e x p # ) ( x ) = e x p q ~ ( x ) [ ( H ~ ) ( x ) - / ( e x p # ~ v - l - q ~ v ) v ( d Y ) ]  (17) 

:= + y )  - 

In application to the pseudodifferential dynamics iOt¢(x,t) = (H¢) (x , t )  
with ¢ = exp(R+iS) ,  one easily derives [4] its implications for the real functions 
O = exp(R+ S) and O. = exp(R-S) ;  plus a trivial extension from H to H + V 
situations. 

R e m a r k  : Experience [15, 2] with the Gaussian (standard Laplacian gener- 
ated) noise proves that the Madelung substitution ¢(z, t) = exp[R(x, t )+iS(z ,  t)] 
would associate with the SchrSdinger equation a pair of time adjoint generalised 
diffusion equations where the Feynman-Kac potential (time dependent in the 

A ~ i 1 2  . 
general case) equals 2m-~[2Q(x,t) - V(z)]. Here Q(z , t )  = 2rnD 2 ~p~-fi7~-~(x,t) 
and V(z) is taken as an external conservative force potential. Let us em- 
phasize that V(x) actually was the Feynman-Kac potential of the dynamical 
semigroup prior to the analytic continuation in time procedure. The mapping 
V(x) --+ 2Q(x, t) - V(x) is an effect of the analytic continuation in time, as 
manifested on the level of the associated [2, 3] Feynman-Kae kernels. 
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In view of (17), the pseudodifferential Schrbdinger equation iOt¢(x, t) = 
He(x, t) implies the following time evolution of the Madelung exponents: 

O¢R = HS - /[exp(R~,y) sin Szy - S~y] du(y) 
Q 2  

1{ 

O,S = - H R  + / [exp(R~y)  cosS~ u - 1 - R~y]du(y) (18) 

1t 
where H = F ( - i V ) .  

By employing (17) with respect to pi/2 = exp(R), we arrive at: 

Hpl/2pl/2 / 
Q : =  = H R -  [exp(R~u) - 1 -  R~y]du(y) (19) 

R 

and hence: 
f 

OrS = - Q  + / exp(R~y) [cos(S~v) - 1] dr(y) (20) 
R 

The same procedure can be repeated for O = exp(R+ S) and O, = e x p ( R -  
S), which implies: 

(21) 

O,O,=-HO.+O.[2Q- fexp(R,y )[s iuS ,  y+cosS, y+exp(-S,y)-2ldu(y)] 

In contrast to the Gaussian case [15, 2], equations (21) do not take the 
form of a time adjoint pair, unless some additional restrictions are imposed on 
the Madelung exponent S(x, t) (notice that we have restored time dependence, 
skipped before for convenience). An obvious demand is S(x + y, t) = S(x, t) 
for all y, t, and any fixed x. But then, equations (21) would manifestly refer to 
the stationary (measure preserving) random dynamics, governed by the pair of 
equations: 

0,0 = HO - 2QO 
0~0. = -HO.  + 2QO. (22) 

which are mutually time adjoint. Hence they would fall into the Schrbdinger 
problem framework[2, 4] with a trivial implication that the measure preserving 
process is Markovian. This however cannot be a property of the "free" dynamics 
since we need external potentials to secure stationarity. Let us therefore make an 
essential amelioration by performing the previous analysis for the case i0~¢ = 
(H + V)¢ with V = V(x). Then, the stationary system of equations would take 
the form: 

O~O = He  - (2Q + V)O (23) 
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0tO, = -HO,  + (2Q + V)O, 
which upon substituting S(z, t) = Et, where E is a constant, yields a pseudod- 
ifferential version of the Sturm-Liouville problem: 

"Hpl[2 - E] pl/2(x) 0 HpU2(x)- [Z p--~/2 + V(z) = (24) 

Hpll~(x) 
- E - pll2(x) 

to be solved (for a chosen value of E) with respect to the square root of the 
probability density p(x), once the external force potential V(z) is selected. 

This problem has its Gaussian counterpart in the study of the measure pre- 
serving dynamics [2] , and in the present context it can be solved by invok- 
ing those potentials for the original pseudodifferential Schrbdinger equation, for 
which the bound states (i.e., stationary solutions) have granted the existence 
status. The relevant analysis has been carried out in the studies of the relativis- 
tic stability of matter [13]. In addition we know that in the stationary case, the 
Feynman-Kac path integral generalization to L6vy semigroup kernels is avail- 
able. 

However, the Markov property cannot [4] automatically be attributed to the 
nonstationary dynamics, as described by (21). 

The probability density p(z, t) (respectively ~(x, t)) was a fundamental en- 
tity in our previous considerations: in fact, providing the time evolution of the 
probability measure for the whole time interval of interest, so that the transition 
probability densities could be sought for [4]. 

In the Gaussian case we dealt with the temporal evolution of the probability 
density given in its traditional Fokker-Planck form appropriate for Markov dif- 
fusion processes [2, 3]. In connection with the pseudodifferential ("free noise") 
dynamics, we address an obvious extension of the previous notion to a class of 
jump processes. We shall extend the usage of the name Fokker-Planck equa- 
tion to any first order in time differential equation determining the space-time 
properties of p(z, t) or ~(z, t). 

Let us investigate the time developement of ~(x, t) = 0(x, t)O.(x, t), where 
0(x, t), 0. (x, t) come out as solutions of the temporally adjoint pair of equations 
of the form 

OtO = HO- YO (25) 
OtO, = -HO,  + VO. 

with a Feynman-Kac potential V. Then, in view of (17) and 0 = exp(R + S), 
0. = exp(R - S), we get an evolution equation for the probability density: 

Ot-fi(x,t)=O.(x,t)(HO)(x,t) - O(x,t)(HO.)(x,t) = (26) 

/ [-O.(z,t)O(x+y,t)+ O(z,t)O.(z+y,t)+2-fi(z,t)VS(x,t)l-~y2] du(y) 
R 
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Following the traditional recipes when dealing with L6vy measures [6], let us 
consider an open neighborhood of the origin Icl << 1. Instead of integrating over 
all possible jump sizes, let us integrate over jumps of size lYl > c > 0). The 
removal of this lower bound as c ~ 0 will eventually amount to evaluating the 
principal value of the integral. In case ~ > 0, we can safely remove the compen- 
sating term including y/(1 + y2) from the integral, and restrict considerations 
to the contribution from the first two terms only. 

Our purpose is to establish a connection with the conventional theory of 
jump stochastic processes, as developed in [16]. Integrating over a Borel set 
A C R,  x E A we get: 

i dx / [-O,(x,t)O(x +y,t) +O(x,t)O,(x +y,t)]du(y) = 
t l  

A lYt>e 

O(x,t) +-fi(x+y,t) o(x+y)l  du(y) = (27) 

R lul>~ 

f i O(x,t) [XA(X + y )  - XA(X)] du(y) 
n lyl>~ 

where we interchanged the order of integrations, and made appropriate adjust- 
ments of integration variables (x --~ x - y and y --+ -y), while exploiting the 
property du(-y) = -du(y) of L6vy measures; XA(x) is an indicator function of 
the Borel set A C R, equal to 1 when x E A and 0 otherwise. 

In the present case we deal with a Markov process with transition probability 
densities given for arbitrary time instants: ~(x,t)  = fnP(Y, s, x,t)-fi(y, s)dy, s < 
t. By invoking the standard wisdom about jump Markov processes [16], and ex- 
ploiting limq~ p(y, s, A, t) = XA(Y), for any Borel set A C R away from (-e, +c), 
we can define the jump process running with jumps of size lYl > c > 0. It should 
be viewed as an approximation of the original stochastic process governed by 
(26), with the initial data ~(x, 0) common for both: 

= f + (,,).,(t) f (28) 
_n I~1>, 

where 
1 

q(z,t,A) := l im [p(x,t,A,u) - XA(X)] = 
u~t u - -  t 

f + u,t) [XA(X + Y) -- XA(X)] du(y), 
0(z, t) 

lu l>~ 

(v)A(t) := i-fi(x,t)[2VS(x,t)] dx 
A 

(29) 
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Here q(x, t,A) > 0 for all x which are not in A, in agreement with [16]. We 
have also introduced a pseudodifferential counterpart of the current velocity field 
v(x, t) = 2VS(x, t), previously attributed to diffusion processes where the prob- 
ability conservation law (a continuity equation in another lore) cgtp = -V(vp)  
plays the rble of the Fokker-Planck equation. 

Notice, that in the particular case of ~(x, t) _= 1 for all x, t, and V = 0, 
Eq.(26) reduces to the "free noise" situation covered by the traditional Fokker- 
Planck equations. Then, q(t,x,A) = flvl>e[XA(X + y) -- XA(x)]dv(y), while R = 

- S ,  -i = exp(2R) = 9. implies (V)A(t) : ---if(x, t)lba where [a, b] := A C R. 
Now, let us address the Fokker-Planck equation for the pseudodifferential- 

Schrbdinger dynamics case, which we consider in the form analogous to (26); see 
also (1) for comparison: 

iat¢ = H e  + V¢  (30) 

icgt¢= - H e  - V¢ 

We re-emphasize that to define the probability density p(x,t) = I¢(x,t)] 2 one 
actually employs solutions of the time adjoint pair of Schrbdinger equations. 

In view of (30), the pseudodifferential continuity equation follows: 

atp(x,t) = - i  [¢(x,t)(H¢)(x,t) - ¢(x,t)(g¢)(x,t)] = (31) 

/[ - i  -g(~, t)¢(~ + y, t) + ¢(~, t)¢(~ + y, t) + 2ip(~, t)vs(~, t) 1--T~ d~,(y) 
R 

Our next step is a repetition of the procedures behind (27), which implies: 

R 

fd J 
A lyl>~ 

21: [¢ (~ , t )~ (x  + y,t)] = 

f d~ f xA(~)2p'Z~(.,t)p'/2(~ + t) sin [S(~,t) - S(. + t)] d~,(y) = Y, Y, 

R lyl>~ 
(32) 

-- / p(x,t)dx -- / Pl/2(x + y) sin [S(x + y,t) - S(x,t)] [XA(X + Y ) -  XA(x)]dv(y) 
p112(x) 

_a lyl>~ 

where Z[.f(x, t)] stands for an imaginary part of a complex function .f(x, t). So, 
a counterpart of (28) reads: 

Otp~(A,t) = /q(x, t ,A)pe(x, t)dx + (V)A(t) / l~y2dzJ(y) (33) 

R lyl>~ 
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where, however 

q(x,t,A):= / I [  g(-~,g j [XA(X+y)--XA(x)ld~(y) (34) 

lyl>¢ 

no longer can be derived from transition probability densities of the process, as 
in the previous discussion, because in general our process is not Markovian [4]. 
At least in the case of nonstationary dynamics, the only transition probability 
density which is at our disposal connects an initial instant of the evolution with 
any later one. In fact, we might even not be sure that  q(x, t, A) is a well defined 
probabilistic object, because of the presence of sin[S(x + y, t) - S(x, t)] in the 
integrand. At this point an observation of [14] helps. Namely, in view of the 
identity: 

] (3a) 

valid for Borel sets A C R, which are away from (-e ,  +e), we can always pass 
from (32) to the rearranged form of (33): 

Jr t J d,.,(y) 
lyl>~ 

(36) 
implying that  q(x, t, A) is positive for all x which are not in A, as should be the 
case [16]. 

In fact, our Fokker-Planck equations involve exclusively the integral term on 
their right-hand-side: 

cOt-fi~(A, t) = f ~(x, t, A)-fi,(x, t)dx (37) 
a ]  

R 

Otp~(A, t) = / q(x, t, A)p~(x, t)dx 
R 

where an overbar distinguishes between probabilistic quantities characterising 
different families of stochastic jump processes before and after an analytic con- 
tinuation in time of the given holomorphic semigroup, respectively. Let us em- 
phasize that  the above simplification occurs only in the [y[ > e > 0 jumping 
size regime. The real rJle of the two spurious, in the present regime, terms is to 
compensate the divergent contributions from the Lfivy measure when the prin- 
cipal value integral e ~ 0 limit is considered; then the standard jump process 
theory does not apply. Anyway, those two terms are irrelevant for any e > 0, 
irrespectively of how small e is. 

More detailed analysis and a number of extensions of the described formalism 
can be found in the original publication [4], while a discussion of the Gaussian 
(Wiener measure generated) case and this of the SchrJdinger interpolation prob- 
lem in Refs. [1, 2, 15, 3, 17]. 



86 Piotr Garbaczewsld 

References 

1. J.C. Zambrini, J. Math. Phys. 27, 3207 (1986). 
2. Ph. Blanchard, P. Garbaczewski, Phys. Rev. E49, 3815 (1994). 
3. P. Garbaczewsld, R. Olkiewicz, ~Why Quantum Dynamics can be Formulated as 

a Markov Process", Phys. Rev. A, in press (1995). 
4. P. Garbaczewski, J.R. Klauder, R. Olkiewicz, ~The Schr5dinger Problem, L~vy 

Processes and Noise in Relativistic Quantum Mechanics", Phys. Rev. E, in press 
(1995). 

5. E. Nelson, "Quantum Fluctuations ~, Princeton University Press, Princeton, 1985. 
6. L. Breiman, "Probability", Addison-Wesley, Reading, 1968. 
7. E.W. Montroll, B.J. West., in: "Fluctuation Phenomena", ed. by E.W. MontroU 

and J.L. Lebowitz, North-Holland, Amsterdam, 1987 
8. A. Janicld, A. Weron, "Simulation and Chaotic Behaviour of a-stable Stochastic 

Processes", Marcel Dekker, New York, 1994. 
9. H.C. Fogedby, Phys. Rev. Lett. 73, 2517 (1994). 

10. B.B. Mandelbrot, "The Fractal Geometry of Nature", W.H. Freeman , New 
York,1982. 

11. J. Klafter, A. Blumen, M.F. Shlesinger, Phys. Rev. A35, 3081 (1987). 
12. X.J. Wang, Phys. Rev. A45, 8407 (1992). 
13. R. Carmona, W.C. Masters, B. Simon, Journ. Funct. Anal. 91, 117 (1990). 
14. G.F. De Angelis, J. Math. Phys. 31, 1408 (1990). 
15. P. Garbaczewsld, Phys. Lett. A172, 208 (1993). 
16. I.I. Gikhman, A.V. Skorokhod, "Introduction to the Theory of Random Pro- 

cesses", W.B. Saunders Comp., Philadelphia, 1969. 
17. P. Garbaczewski and R. Olkiewicz, "Feynman-Kac Kernels in Markovian Repre- 

sentations of the SchrSdinger Interpolating Dynamics", in preparation 


