Lévy flights in confining potentials

(Confinement and hyper-confinement in inhomogeneous
environment )

Two classes of stochastic jump-type processes are considered:
- driven by Langevin equation with Lévy noise
- so-called topological Lévy processes, with no known
Langevin representation (driven by Lévy semigroups)

Issues addressed:

- differences in dynamical behavior

- common asymptotic stationary probability densities
- confinement (pdf has a finite number of moments)
- hyper-confinement (all moments in existence)



Inspiration: Targeted stochasticity idea of |. Eliazar and J. Klafter,
J. Stat. Phys. 111, 739, (2003)

Leévy-Driven Langevin Systems: Targeted Stochasticity

X(dt)= — f(X(1)) dt + L(dt)

Dirift Diriver

1. Evolution: What is the Fokker—Planck equation governing the
evolution of the pdf of the system’s state?

2. Steady state: In steady state, what is the connection between the
system’s drift function f, driving noise, and stationary pdf?

3. Reverse engineering: Given a “target’” pdf p, can we “tailor design’
a drift function f so that the system’s stationary pdf would equal the desired
“target” pdf p?

Question: Do we have a guarantee that an invariant density may actually be
an asymptotic target ?



Getting started: Brownian motion inspirations
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Smoluchowski diffusion processes
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Stationary pdf

pulz) =exp ([F, — Vix)]/kpT) = exp[2d(x)]

,ﬂiﬂ = exp® and b= 20DV

Becoming parabolic - no difference in the ultimate
dynamics and asymptotics of the inferred pdf !
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Schrodinger semigroups
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0,(t) = [exp(—tH)8,)(0) H—-DA+V

Note: suitable restrictons upon the semigroup potential need to be respected, to have a positive and
continuous semigroup kernel function

k(y. s, x.t) = (Exp[—ff _ ._.,jH]J (y.x) = /e.rp[—l V(}fftej. u)du] duls, y | t, 7]
plo, t) = /p(y.s.:c. thply. s)dy

1/2,
o ()
1/2

= plu, s, 2, 1) exp[®(y) — Oz
o ()

Fly. s, v t) = ply. s, x.t)

If p.(x) has the Gibbs form then ®(y) — &(z) = (1/2kpT)[V(x) =V (y)]



Ornstein-Uhlenbeck example
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Targeted stochasticity in the Gaussian case: given g, lx) we

reconstruct (i) semigroup dynamics (i) Langevin-type dynamics
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Lévy flights
Elexp(ipX;)] = exp[—tF(p)]

Lévy-Schrodinger semigroups

p—p=—iV
= F() lexp(—tH) f](x) = [exp(—tF(p)) f(p)]" (z)
~ indicates Fourier transform, v its inverse
Stable noise and its generator
F(p) = Ap|* = H = \|A]*?
dp=+DAp. o= —A ,-i|“f'“9p

Cauchy noise

F(p) = Ap| — H = F(p) = A\|V| = A=A




Response to external potentials

Langevin scenario

i=blz)+ A ) = dp = —V(b-p) — AA[*p

Gep=—V(b-p) — AAM2p

Targeted stochasticity

S 1A p, () da
pu()

Langevin drift

blx) =—

Cauchy case dpe =0==V(bp, ) —7|V|p.

Note: pdfis not Gibbsian, drift function is not directly related to V Inp,
even though exp[®(z)] = pv/*(x)



Lévy-Schrodinger semigroups

exp(—tH),) H, = MAP2 +V

a8, = —AA|M26, = V8,

Schraodinger’s boundary data problem

9,0 = MAM20 + Vo

Bz, )z, t) = plx, t) |ﬂ|#f.*g lﬂifﬂ
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Semigroup potential

HiRlexp(—D)p] =V - p

hp = Ho0" = —Aexpd)|A

A discord

Oep = =V (b p) — AJAJp



Cauchy driver
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Ornstein-Uhlenbeck-Cauchy process
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Confined Cauchy noise

pel) =

Langevin scenario

dipy =0=—=V(bp,) —

semigroup| [route
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Invariant density
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Hint: targeted stochasticity
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Let ns consider

Dynamical semigroup reconstruction
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Langevin drift reconstruction
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Confinement hierarchy
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Bimodal density (Dubkov et al.)
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Langevin dhp=—-V (

.ﬂ) — AA[*2p

, Topological” Op = BOH" = —f\fﬁf‘ill}‘l’]|ﬂ|““'fi['?ip'f—‘[*flﬂ] —V.p

A discord and its analysis | Interms of a targeted stochasticity

(1) choose a functional form of V(z) and thus the drift of the Langevin-
tyvpe process,

(11) infer an invariant density p, that is compatible with the fractional

expl®(x)] = p*(x) Folcker-Planck equation
(ii1) given p,. deduce the corresponding Fevnman-Kac (e.g. dynamical
* \ A2 o2 semigroup) potential V
== o (iv) use ¥V and verify whether the topologically induced dynamics” is affine
to

(v) check an asyvmptotic behavior of p(x.t) in both scenarios

(vi) repeat the procedure in reverse by starting from (ii1) and then deduce

the drift for the Langevin equation with Lévy noise



Targeted stochasticity
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FIG. 1: Temporal behavior of the half-maximum width (HW):
for the OUC process in Langevin-driven and semigroup-driven
(topological) processes. Motions begin from common initial
data p(xz,t = 0) = (z) and end up at a common pdf (20) for
o=1.

in the

20

p(x)

time domain

Langevin - type process

FIG. 2: Time evolution of Langevin-driven pdf pr(z,t) be-
ginning from the initial data pr(z,t = 0) = §(z + 1) and
ending at the pdf (20) (shown as "asymptote” in the figure)
for ¢ = 1. Figures near curves correspond to t values.

Dynamics in the OUC process with:

o
(o2 + x2)

p«(T) =
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Targeted stochasticity in the time domain (confined noise)

Invariant density

2 1

Langevin drift

Semigroup potential

Langevin - type process
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Note: PG and R. Olkiewicz, J .Math. Phys. 40, 1057, (1999)

Corollary 2:

al The Schrodinger boundary-data and interpolation problem (3)—i6) admits a class of unique

solutions in terms of Markov stochastic processes, for each concrete choice of the
(Feynman-Kac) kernel function that 1s determined by the Cauchy generator plus a locally
bounded, positive and measurable potential function.

The pertinent processes are of the jump-type and arise as suitable limits of step processes. In
particular, the uniform i time ¢ = [0,T] convergence in distribution to the perturbed Cauchy
process X is established, when the potential function is bounded.

Remark 1: The developed _techniques can be used to investigate the existence issue (including
that of the step process approximation) of more general jump-type processes, in particular those
related to the quantum evolution with relativistic Hamiltonians.”™

Remark 2: In the present paper, to simplify calculations and to make formulas more transpar-
ent, we have considered processes assoclated with the Cauchy generator (and thus with the
a-stable symmetric process as a major tool) in space dimension 1. A glance at the construction of
solutions of the Schrodinger problem makes clear that the previous limitations are inessential. In
fact, we could consider any @ = {0,2)-symmetric stable processes on K7, for arbitrary n= 1, and
secure the strict positivity and joint continuity in space variables of the corresponding transition
density. Such properties for n=2 and for potentials from the Kato class &, , were established in
a very recent publication, Ref. 31, Theorems 3.3 and 3.5. However, an 1ssue of sample path

properties and of step-process approximations must be settled separately. L7



Levy processes ininhomogeneous media
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Figure 1. Random walk processes in inhomogeneous salience fields =(x) in two
(a) and one (b} dimensions. Source and target locations of a random jump are
denoted by y and x, respectively.

The Belik and Brockmann (2007) attractivity or salience field s(x) is
identified with an invariant pdf #.(x] |, but in the Gibbs form !

pelz) = | (1/Z)exp(—V.(z)/kpT)
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Topologically induced jump-type processes, an outline

dip = —ANA["?p

(JAM2f)(z) = - D(u+ 1) sin(mp/2) ]f flz) .

- .I.'|1+'H

op(e) = [(el)o(e) — wiele)p@)v(a:)

The jump rate is an even function, w(z|z) = w(z|z)

we replace the jump rate  w(x|y) ~ 1/|z — y[1TH

exp[P(z) — P(y)]
| — y[ttH

by the expression  wy(z|y) ~

we(z|z) # we(z]z)
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(1/N)8ip = |AJL2 F = —exp(®) |A[*/ 2 [exp(—D)p] + pexp(—®)|A[*/? exp(®)

Whatever potential ®(x) has been chosen (up to a nor-
malization factor), then formally p,(z) = exp(2®(x)) is

a stationaryv solution

—t o

if for a pre-determined p, = exp(2®), there exists the semigroup potential V

the dynamics  helongs to the semigroup framework.

Rewriting the stationary pdf p, as p.(x) = (1/Z)exp(—V.(x)/kpT) We get

Bp = —exp(—kV, /2) |A[*2 exp(KV, [2)p + pexp(rV. /2) A2 exp(—kV, /2), & = 1/kgT.

The transport equation has the previous, semigroup-driven form !

Oyp = HoLH* = —,:"l.le?{pflljl|ﬂ|ﬁ*“ﬂ[l?:{plf—‘[}:|,ﬂ] —V.p
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Cauchy driver: Gibbsian versus non-Gibbsian
asymptotics

Oy p = —exp(—kV, /2) |A|*2 exp(kV, /2)p + pexp(kV. /2)|A|*/? exp(—£kV, /2)

We scale away dimensional units and consider typical Gjbbsian forms
of Vi@)=d(x)=2'—-222+1 and @ = Vi(z) =2

Hyper-confinement

Potentials

FIG. 4: The coordinate dependence of the semigroup po-
tential V(x) (curves 1 and 2), corresponding to Vi(xz) =
' —22x% + 1 (curve 3) and V. (z) = z? (curve 4), respectively.
Curves 3 and 4 are shown for a comparison with, strikingly
similar in shape, semigroup potential curves 1 and 2 -



Non-Gibbsian alternative

Remark 2: Would we have followed the standard
Langevin modeling for the Cauchy driver, with the exter-
nal force potential V, (z) = 2* — 222 + 1 and the resultant
drift —VV, = b, an invariant pdf of the corresponding

fractional Fokker-Planck equation would have the form:

2a(a® + b?) 1
T (a2 +02)2+2(a? — B?)a? + 2t

p.(z) =

Potential

ps() E

a ~ 0.118366 and b ~ 1.0208

22



k= (p—

7)/¢

Cauchy oscillator

ﬁlgg = AlV| +

(3

direct reconstruction route:

k2 1/2 _ 1/2
(5%~ Vo) pt/? = =AIVI pt
f (p) _the Fc:-urler transform of f = p

—gﬁprr vlp|f = Vof

U(k) = f(p) o=/

d*y(k)
dk?

= |k (k)

1;‘2( )

[}

a2 5

H:—DA—I—(4D 5

¢ = (s/2y)2
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A unique normalized ground state function of

is composed of two Airy pieces

d*(k)
dk>

that are glued together at the first zero yg of the Airy

function derivative:

(k) = Ag {

14‘“[1:'! wniF]

1.4 -
1-2—_
1_D—-
D_B—_
D.E—_
D_d—-

0.2 -

0.0

Ai(—yo+ k), k>0
Ai(—yo — k), k <0,

= [kl 3 (k)

\ -1
Ag = [Ai(—yo)\/Qyo] . yo ~ 101879297

— v, (p) - momentum space
wﬂﬂx}- coordinate space
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To transform the ground state solution back to coordi-
nate space, we evaluate the inverse Fourier transforma-
tion of the ground state solution (28), see Appendix C
for details. This yvields the following real ground state

wave function f(z) — vo(x)

p(x) = @/_ Ai(t) cosz(t + yp )dt = Ug(i‘-): (29)

m

which determines an invariant pdf p.(x) of the direct
engineering problem (25) as follows:

2

2 oo
0.(z) = (A“) U Ai(t) cos z(t + yo)dt| (30)

(‘4“)/ dt/ dt1 Ai(t)Ai(ty) %
Ho Yo

% cosx(t + yg) cosax(ty + yp).
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p.(x)
- = =Gaussian

p.(x)
- — -(Gaussian

0.6

0.4

Normalized pdfs
Mormalized pdfs

0.0

FIG. 7: Normalized invariant pdf (30) (full line) for the
quadratic semigroup potential. The Gaussian function, cen-
tered at + = 0 and with the same variance ¢? = 0.339598
is shown for comparison. Panel (a) shows functions in lin-

ear scale, while panel (b) shows them in logarithmic scale to
better visualize their different behavior.

Cauchy oscillator ground state pdf is non-Gaussian and non-Gibbsian
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Reverse engineering for the Cauchy oscillator
ground state pdf

For a given p, the definition of a drift function b(x)
(we put either A =1 or define b — b/ ) is:

b(z) = — 1 /[|V|p*(3:)]d3: =

/dm/ P*Ier P()d_
TP« (2

Inserting p.(x), Eq. (30), we get

’:jm Ai(t) sinz(t + yo )dt
fzu Ai(t) cosz(t + yo)dt

b(z) = —
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Drift b(x); Potential V(x)

-10 ,

FIG. 8: Langevin - type drift b(z) (curve 1) and its (force)
potential V(z) (curve 2), that give rise to an invariant density

(30).
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Resume:

We have extended the targeted stochasticity problem
of Ref. [7] to the above semigroup-driven (topological)
Lévy processes, which are widely used in literature to
model various systems, like polymers, glasses and com-
plex networks. Our departure point was as follows: hav-
ing an invariant pdf p.(x), recover not only the Langevin
drift b(z) and potential V(z) = — [ b(x)dz, but also the
potential V(x) of the corresponding topological (semi-
group) Lévy process, being attributed to the same in-
variant pdf.

Furthermore, we have relaxed a common pdf require-
ment and have reformulated the targeted stochasticity
problem as a task of reproducing a suitable contractive
semigroup, given an invariant pdf, with the Lévy (specif-
ically, Cauchy) driver in action. We have shown, that
the semigroup modeling provides much stronger confin-
ing properties than the standard Langevin one, such that

the resultant asymptotic pdf may have all moments.
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