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Summary. We perform a quantization of the Sine-Gordon 1-soliton in so called single-site appro-
ximation, when continuous pulses are approximately reproduced in the linear lattice of classical
plane pendula. We prove the existence of the causal time evolution operator for quantum 1-soli-
tons. The energy operator is not capable to generate the solitary motion.

1. In the traditional derivation of the quantum field theory of a free scalar field,
the Hamiltonian (two space-time dimensions are taken for simplicity):

’_[l(c’)di)z 1(345)2 1 2}
(1.1) H=fd.\'7§ +—2— o +*2—/1 D (x,1),

can be approximated on the finite linear lattice, by the Hamiltonian:
1
(1.2) H= AZ{ p? +—(sz)2+ e x:},

with s enumerating the lattice sites.

The omission of the gradient part reduces the problem to its single site appro-
ximation by the linear chain of harmonic oscillators. In this approximation the quan-
tization of the system lies in introducing quantum oscillators in the place of the
classical ones. To restore the complete quantum system we must here perform
a translation to the quantum language of the neighbour interaction (gradient)
term. One makes it according to [1]:

p: 1/ u R
(13) H=A4 Z { 5 +~2-(A2 +D(0) xs‘)}+720(s1 $2) X, X, -

S; ¥,

Quite analogous procedure can be repeated in the case of the Sine-Gordon system.
The corresponding Hamiltonian:

PR A ENLC3 A v
( ¥ ) = U 9 1 ot ax A'( _COS¢)] (X,t),
is approximated on the linear lattice by:
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1
(1.5) H=4 Z {3 [72 +(V®,)?]+ A (1 —cos qu)},

where again the gradient term is in fact the interaction part of the Hamiltonian,
and carries the nearest neighbour coupling. Its omission leaves us with the linear
chain of the independent plane pendula, which was the root for the construction
of the Scott’s mechanical analog transmission line [2, 3] for the Sine-Gordon pulses.
We do not pretend here to get_exact solutions of the discrete problem. We rather
wish to find a quantum image of 1-soliton solutions in the single-site approximation
together with the quantum term of the Hamiltonian which gives account of the
classically observed long-range correlations between nearest neighbours in the
chain.

2. The knowledge of the classical potential ¥ =mgl (1 —cos 6) implementing
a movement of the plane pendulum with the length / and mass m, allows to consider
the first quantization of this problem in the form of the Schroedinger equation
[4, 5]

[ hz dz

T omi g el _COSB)] w=Ey,

2.1)

where we restricted considerations to the stationary case only. Putting 2z=0 we
trivially receive: )

dZ
2.2) [7+(a— 2g cos 22)] w=0,
where
8ml?
2.3) qg=4m* P g/h* a= P (E—mgl).

An equation (2.2) is known as Mathieu equation and is a solvable problem. Mathieu
functions can be proved to constitute a complete orthonormal set in o2 (0,47) which
is thus a Hilbert space of pendulary states. Creation and annihilation operators can
be here constructed in the form of tensor products. In this case let us introduce
quantities:

(2.4)

the action of which makes invariant the appropriate domain Dch

a* e"ZZ V'k+lek+1(ek+l, e)=Vn+le,_,,
k=0
s S o—
ae,= Z l/k e, e )=V n e ;.
k=1

2.5)
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Here ¢, e; are the elements of the real orthonormal complete system in «? (0, 47).
We have

o0

(2.6) [0, a*]= )" e:@e=1,
2.7 [a, a]=0=[a*, a*],
(2.8) aey=0.

We have thus proved that the triple {a, a*, e, } spans inD<ha Fock representation
of the CCR algebra where e, is a vacuum vector for this representations.

The quantum mechanical Hamiltonian though rather not admitting any
reasonable number of particles representation, can always be considered in the
matrix form:

(2.9) H=) E;e;Q¢.
J

Remark. Let us mention that classically plane pendulum problem can always be,
in a suitable limit, restricted to the harmonic oscillator problem. On the qunatum
level this is not so, because in fact the energy eigenvalues can tend to oscillatory
eigenvalues, but the double degeneracy appears here. Each oscillator level corresponds
to the two adjacent quantum pendulum eigenvalues. In the case of the eigenfunctions
we deal with the Klauder’s phenomenon where the limitting (g—o©) eigenfunctions
correspond to the pseudo-free quantum oscillator [6].

An extension of the above results onto quantum field theory is immediate.
One must here follow the conventional construction [7, 8] which allows to introduce
the so called product representation of the CCR algebra for which the carrier space
is a corresponding IDPS (incomplete direct product space), Fock space, in our
case.

3. Following the preliminary formulation [9] we shall now perform the lattice
quantization of the Sine-Gordon 1-solitons. They are the solutions of the equation:

(3.1) Oe (x, t) =( a:z = 3:2 ) @ (x, t)=m?sin®(x, t),
which are of the form:
(3.2) @ (x,t)=4tan"? exp(im» x—futA).
l/ 1=~v3
The energy E =‘/—18mvz~ and momentum of the soliton can be easily calculated:

8mu

= c¢=h=1.
B l/l—‘z)2
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The approximation of the 1-soliton pulse on the linear lattice is given immedia-
tely, if with each site (the spacing is @), to associate a corresponding characte-
ristic function

1 xed,

(33) AS‘—Xs(x)={ oyl

A, 04, =0  for s%t, | ) 4,cR', pu(d)=a<l
s=0

so that

1
0.0 = [ dup(o @05 ),
G4 20 1fd{1[¢2 @2 +2m2 (1 —cos D)\ (x, 1) 1, (%)
: s(1):=— X5 [@: — D} +2m? (1 —cos X, 1) z5 (%),
aR’ 2 J £

1 1
H(t): e f dx {? [@2+ D]+ 2m* (1 —cos (D)]} (x 0) s (x).

Having given the energy density of the I-soliton # (x, )= (D) (x ,t) one
can establish a position of the energy cetre of the pulse at the initial instant of time
t=0. Let us assume that this particular point, the collective variable, belongs to the
0O-th site which is identified with the s=0 interval. In consequence the 1-soliton is
completely described by the following collection of the initial data

D,0)=0(y+sa)=0,(3), 7, ()=B,0)=7(p+sa),

(3.5) E= [ et @) (5,02 Y #(p), ().

Here ¢, (»)=9¢ (), 7o (3)=n(y) and all the data tend to ¢ (¥) and 7 (p) respecti-
vely with [y|—oo
From now on, we shall simplify considerations by omitting the collective
variable y in all the formulas: ¢, (y)=g¢,; 7, ( V=, B 2 . The uniform mo-
s

tion rule @ (x—vf)=a (x, t) which holds on the continuous level is now approxi-
mated by the following motion rule of the set of the initial data:

os(=0,(y, )=py—vt+sa) = ¢, ()=p,_,
(3.6) #nll
ns(t)=ns(y’ f)=7Z(J’“W+Sa) = ns(t)zns—n

which is simply the shift of the data along the chain, following from the influence
of the neighbour coupling, implied by the gradient term. We have thus separated
on the classical level the nonlinear geometry (shape) of the solution from the fully
linear dynamics. Let us add that a similar procedure can be repeated in the case of
N-soliton solutions where the number N of collective variables is necessary [13, 14].
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Let now the quantum chain be given, where in the single site approximation,
a sequence of independent quantum pendula appears, together with a corresponding
single-site basis. We shall translate the classical data and the motion rule to the
quantum lattice.

Let us begin from the question of statistics. Because each site of the lattice is occu-
pied by a single quantum pendulum whose spectrum is positive and nondegenerate,
if we pretend to describe the line of quantum pendula, the Pauli exclusion principle
should govern its behaviour: the occupation number of each (s, n)-th state of the
lattice is either 1 or 0: (s, n) means that n-th energy level of the quantum pendulum
is occupied at the s-th site.

Because there is no immediate need to have a reasonable correspondence between
the classical and Fermion level, we shall formulate all the results for the subsidiary
mediating Boson level and then in the sense of the weak excitation limit, the transition
to the final Fermion variables will be performed, see e.g. [12]. Let us denote by E,,
E, the energies of the two lowest stationary levels of the quantum pendulum. We
have mapped each plane pendulum, whose energy # s does not exceed E,,;, =E, —F,
into a nonexcited, hence occupying the ground state £,, quantum pendulum. This
receipt is motivated by the naive hope that such energies cannot be quantized, and
play in the theory the role of an inessential noise. Now we have the question of
an energy sharing between quantum pendula of the net energy E of I-solito,
which we consider as the net in the sense of the renormalization by the substraction
of the ground state energy from the total energy at each site of the lattice. We expect
E to be approximated by the sum of quantized portions £,

3.7) sup Z {Es,m—Eo}=E.
2 (s, m} G5

Because £ is a macroscopic value, the equality in fact holds. The l-soliton pulse
has a finite energy value, what if combined with the requirement (3.7) clearly requires
at most finite number of quantum pendula to be simultaneously excited. Note
that the free field techniques, especially the Fock space methods, can be used
by virtue of this argument.

With each single lattice site, let us now associate the subsidiary Boson field @,
whose lattice Fourier expansion is

I (=t (ke
(3.8) ¢s=V—v—Z{a:eXP v facexpt V),

k

which allows to introduce the corresponding creation and annihilation operators:

[a, a:]_ =0y

(3.9)
[aks al]— =0 ay .QB=O for all ](.

In the above the normalization constant is ¥'=dim {(s, n)} for the set of pairs
realizing supremum in (3.7) and k enumerates the finite set of degrees of freedom
(energy levels of pendula reproducing the 1-soliton pulse). The quantum numbers k




366 P. Garbaczewski, Z. Popowicz

are defined by the initial 1-soliton data, if we define the appropriate correspon-
dence rule, by the use of the coherent state methods:

fy=exp {Z Peg a:} Qy-exp (é !Ifllz),
(3.10) 1 ikms : ikms |
fs= V"v" Z {f;‘ exp( 7% )+jk exp(— % )’ .

Let us notice that putting f;=¢, we get
(3.11) p|Ds|p)=0.

We can expect the existence of the proper @, such that {¢ |®,| 9> =n, however
for this purpose we must realize the solitary dynamics in the quantum chain.
In the single-site approximation the form of the energy operator immediately

follows:
H.= Z 1V26k exp[zﬁ(s s)]}
H=>"H,,

where ¢, must still be properly defined. A total energy operator for the 1-soliton
reads then:

(3.13) H= a, ay .
)

(3.12)

The solitary evolution rule on the classical level implies:

¢5(1)=¢(y+sa—'vt) = (ps(t)ztps—ln

(314) l ikm ikn y
Cei—=—— texp ¥ (S‘")+ “exp ¥ o
s—n V/T/' ¢k p % p ’
k
so that
" na i ikv
(3.15) o \t=—"|= o exp\ —— 1)

)

na
In consequence, for t=7

(3.16) H©O= )" a0 a () a

we have

(3.17) (plH(®)|p)=(p|H|p)=E.
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On the other hand, s

H=2Hk

k

(o |Hy ¢)=(¢1Hk( ="a) | (/’)-

v

If now we simultaneously require:

i 2 Zé’/ kns
H = oS —=—,
Vv &7

2 kns
HA\A—??Z Hy cos —

(3.19)

then the correspondence rule # ,=(p |H| ¢) establishes the following connection
between the classical and quantum energy data:

(3.20) =
’ G=—3_.
"ok o

To get a quantum image of the I-soliton evolution it is useful to know that if the
quantum gradient term is taken in the form [10]

1 by
D% =D*(n —m)=7 f k?* exp [ik (im—n)],

a-0=>92*--V2d(x—y),

(3.21)

then an immediate quantum lattice analogue of the space translation operator can

be given:
i ikm z - ikm L
= — v Z {ake( L5 ) —a,:e( L2 )} Ko
(3.22) e
P=—i Z Ty, @nm ¢m [7[,,, ¢m]— - iénm
so that:
(323) exp(ipn)'¢m CXP(_iPn):¢m—n )

exp(int) D, exp("int)=¢m(t)=d>m—vt => Dp_ps

na
t=—

v

Obviously, in the sense of the correspondence principle (3.23) is the quantum image
of the 1-soliton evolution rule, which seems at first sight to contradict the ordinary
expectations that an energy operator H should play this role rather: (¢ |@,,_,| p)=
=@m_n. Let us in this place prove that the energy operator of the just constructed
“quantum soliton” cannot be a correct generator of the solitary time translations.
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For this purpose it suffices to notice that A obeys the restrictions of the Borchers
theorem [11]. Given a one parameter group U,=exp (—iHt) where the generator
H>c¢> —oo. Denote F,=U, FU[ " for any operator F. If there is a pair of projectors
E, F such that for |t|<e, EF,=0, then for any t€ R', EF,=0. Let us remark that
the solitary evolution rule:

i na
(3.24) 1=t =—=9,()—=p,_.(1),

can be equivalently described by the motion of the localization volumes (sites)
while the I-soliton not evolving at all:

(3.25) A= A=, ()= p,_,(1).

In the operator language it has to be associated with each 4, a corresponding pro-
Jjector By

Let us consider the three sites A4,, 45—y, 45_,. Then obviously E, E, ,=0and
one needs at least finite time interval |¢|>¢ to get £, U, E, U '50 where for
ltl<e 0=E, , U, E,, U; ' holds. In consequence, for neither time 7 we can get the
required transition

(3.26) A~ A'=4

B D

if the positive evolution operator is used. In this connection let us notice that the
correct evolution operator — Pv for the quantum image of our I-soliton is manifestly
not positive. The above arguments Justify, in a sophisticated way, the indepen-
dence of the single sites of the lattice for all times, like this appearing if the gradient
term is absent in the Hamiltonian. Does it at all exclude the long range correlations
for any class of positive Hamiltonians?

The above considerations suggest that together with the collective shift operator
P, one should introduce a collective velocity operator Q, which in the case of I-solitons
Is not proportional to 2 as in that case PQ would be AP? and hence positive if .>0.
The last step in our considerations is now to make a transition to Fermion variables,
which should appear by virtue of the built in Pauli exclusion principle. The most
convenient here, though obviously not unique tool, seems to employ the weak
excitation limit concept, and then the map [12]:

lp &, 1F=‘pw
(3.27) Iy Hlp=Hp,
IFPIF:PFv

which realizes the translation of our construction of the quantum I-soliton to the
Fermion language.

In this place let us mention that the presented quantization procedure is the first
step for the lattice quantization of the Sine-Gordon system.

The next step is to modity the lattice approximation idea to be applicable to bions
and the general N-soliton solutions of the Sine-Gordon equation. We shall here
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only announce that in the bion case in addition to the lattice causal evolution (hoping
motion which translates excitations from one lattice site to another we are forced
to introduce the acausal evolution generated by the energy operator. The last motion
follows from internal oscillations, which are characteristic for bion solutions. The
general case of N-soliton solutions will be considered in the forthcoming paper [13].
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I, Tap6auercku, 3. [Monosn4, Beejenne B PeieToOYRYI0 KBAHTH3AIMIO cHeTembl Sine-Gordon

Conepxanne. B paboTe onucaH Meroi| KBAHTOBaHHS OJHOCOJMTOHHBIX PEUICHHN yBAPHCHHI—
B TaK Ha3bIBAEMOIl O/IHO-y370BOM anmpokcuMauumd. Halinen npuudHHBIH OnEpaTop BPEeMEHHO
IBOIIOUHH UIS KBAHTOBBIX OJHOCOTHTOHOB. /IOKa3aHOS YTO 9TO HEranmMJILTOHOBCKAS 3BOIFOLIMA.




