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1. Introduction

In the recent discussion!!) of the Brownian diffusion admitting environmental recoil
effects, one arrives at a reformulation of Nelson’s stochastic mechanicsi?~8. The very
existence of the random environment and the required strict validity of the momentum
conservation law on all scales adopted for the investigation of the individual (random)
particle scattering by the medium,implies that the collective dynamics of the statistical
ensemble is described by the Schrédinger equation (the diffusion constant D takes place
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of i/2m in the stochastic derivation).It demonstrates convincingly that the intrinsically
statistical theory might drive into the domain exclusively (according to folk lore) reserved
for the study of quantum phenomena. However ,to the author’s knowledge,the discussion
of why the ensemble dynamics is a crucial factor here,and how to reconcile the individ-
ual and collective (ensemble)features of the diffusive propagation>=8l for the first time
was given in Ref.1.Individual particles do follow a diffusion process independently (in
the repetitive series of the single particle trials) .The collective dynamics allows to iden-
tify them as members of the very concrete particle ensembles,the relevant information
being encoded in the initial data (the familiar quantum mechanical state preparation
procedure might be justifiably invoked at this point). The pertinent ensemble dynam-
ics is uniquely determined once the Cauchy problem is solved for the coupled system of
nonlinear equations.It is composed of the probability conservation law

dp = - V(pv) (L1)

and one of the momentum balance equations (the kinetic theory lore is quite appropriate
here)

(& + vV = %wv 2Q) WBembrini) (1.2)

(% DY %V(Q ~ V) (Nelson) (1.3)
where (we consider diffusions in one spatial dimension for simplicity of the arguments)

A 1/2

Q= 'zmp’pf7 (14)
and the initial data po(z), vo(z) are given. In general we consider evolutions taking place
in the finite time interval [to, T']) with unspecified endpoints,eventually if possible extend-
ing to both infinities.In the above m denotes the mass of each individual particle in
random motion,D is a diffusion constant,V=V(x) is a Rellich class potential (continu-
ity and boundedness from below are sufficient for our purposes) of a conservative (this
condition might be relaxed) force field. Furthermore,p = p(z,t) stands for the ensemble
density (same as a probability distribution of the random variable X(t) undergoing the
diffusion process) and:

b(z,t) = v(z,t) + D% (1.5)

is the mean local velocity field (forward drift) of the diffusion. It is instructive to notice
that the momentum balance equations (1.2),(1.3) are the equivalent expressions for Nel-
son’s acceleration-in-the-mean formulas”®! the only time reversal invariant analogs of the
second Newton law in case of the diffusion processes,whose sample paths are continuous
but not differentiable.
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Assume to have a priori given b(z, t) for all times of interest.The individual particle
dynamics which might underlie either (1.1),(1.2) or (1.1),(1.3) is then governed by the
stochastic differential equation!3*]

dX(t) = b(X(t),t)dt + V2D dW(t) (1.6)

X(to) = o

The random displacements are generated by the Wiener noise W(t),which superimposes
probabilistic fluctuations upon the deterministic contribution bAt.The latter is a typical
path ensemble input,since it is the mean velocity evaluated over all sample paths originat-
ing from x at time t, in the repeatable series of single particle trials.Accordingly, b(z,t)
encodes the mean tendency of motion,which is basically unidentifiable unless sufficiently
many sample flight data are accumulated. By means of the stochastic Ito calculus® ,the
problem (1.6) gives rise to the statistical transport recipe (the microscopic law of random
displacements) p(y, s, z,t),s < t with the properties

Aast) = / PR R R

3:? - DASP i V:(bp) P‘-‘p(yr"vx’t) (1‘7)
b(z,t) = limA,_.oé /(y —z)p(z,t,y,t + At)dy = v(z,t) + (DVp/p)(z,t)

where the dynamics of v(z,t) and hence b(z,t) is specified by the coupled problems
(1.1),(1.2) or (1.1),(1.3). It is a peculiarity of Markov diffusions that the backward
propagation rule allowing to reproduce the past statistical data of the process (1.6),(1.7),
can be deduced

ply,9) = / Pt 8,2, )p(z, )z 8 <t

p(y,8,2,t)p(z,t) = p(y,s)p(y,s,7,t) (1.8)
Oip. = —DAYp. — V,(bup.)

bu(y,s) = limA,_.oZl; /(y—z)p.(:c,s—-As,y,s)dz = v(z,t) — (DVp/p)(z,t)

To avoid unnecessary complications (see however Ref.6) we assume that a diffusion pro-
ceeds in a simply connected area where the density does not vanish except possibly at the
boundaries. Let us notice that a straightforward consequence of the assumption (1.5)
which basically makes the Wiener (Brownian) noise responsible for whatever is going

on,is that
p = —V(pv) = DDp — V(bp) = —DAp — V(bap) (1.9)

where v = 1(b + b.), so that the forward and backward Fokker-Planck equations for the
probability density are naturally built into the formalism.
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Example 1:Free Brownian dynamics
Let us consider the initial probability distribution of the random variable X (0) of

the Wiener (Brownian in the high friction regime) process in the form

zz
po(z) = (ra’)exp( - =] (1.10)

Then its statistical evolution is given by the familiar heat kernel

p(y! s,, t) = [4I'D(t —-_ 3)]"‘/7ezp( o (: = !I)2

100 _3)] (1.11)

p(z,t) = [r(a? + 4Dt)] " ezp[— ﬁﬁ;]

where s <t .
Let us notice that since the density distribution is now defined for all times ¢ > s

we can introduce a convenient device allowing to reproduce a statistical past of the
(irreversible on physical grounds,but admitting this specific inversion mathematically)

p(y,s)
(y,s,z,t) = p(y, s, z,t 1.12
Py )=p(y )p(m) (1.12)
with the properties (set s =t — At)
[ s,z tiptas iz = plw.0) s < (1.13)
a? 4+ 4Ds 4D

z
/yp.(y,s,z,t)dy "3 +aDi ted o 1 +4DtAt =z — b.(z,t)At
where b.(z,t) = —2DVp(z,t)/p(z,t) and quite trivially b(z,t) = 0.Notice that by defin-
ing v(z,t) = 3b.(z,t) ,because of the heat equation we have satisfied (1.1),(1.2) with
V =0 ,and

(oo)(2:1) = / P(y» 5,2, 1)po(y)vo(y)dy (114)

Example 2:Free quantum evolution as the diffusion process
By defining

z —y + 2Dty/a?)?

p(,0,7,) = (n Dt) Prezp| - =LA IDWIT), (h12)

we realise that
/ p(,0,2,t)(ra®) " exp(—y*/a®)dy =
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0 el ] = ple, ) (116
[t + 4Dra)A P\~ g yapi = AT 19
and
2Dy, a3y 2D(a* — 2Dt)z
[ 0,2 ety Py = DT = Ut (D)

where evidently
v(z,t) = b(z,t) - DVp(z,t)/p(z,t) (1.18)

solves equations (1.1),(1.3) with V = 0 and via the familiar Madelung transcription of
the free Schrédinger dynamics i0(z,t) = —DAY(z,t) with ¢ = exp(R + iS),p =
ezp(2R),v = 2DVS the link between the Brownian type diffusion and the quantum
mechanical evolution is established.

Example 3: Uses of the imaginary time transformation

For V continuous and bounded from below ,the generator H = —2mD*A + V is
essentially selfadjoint,and then the kernel h(z, s, y,t) = ker[ezp[—(t —s) H]] of the related
dynamical semigroup is strictly positive.On the other hand it is quite traditional to
relate this dynamical semigroup evolution to the quantum mechanical unitary evolution
operator ezp(i Ht) by the imaginary time substitution ¢ — it . In the most pedestrian and
naive interpretation of this fact,one might be tempted to invent the concept of ”diffusion
process in the imaginary time”.Actually nothing like that is here allowed,and if taken
seriously, becomes self-contradictory. The routine illustration for the imaginary time
transformation is provided by considering the force-free propagation, where apparently
(see.e.g.the Ref.15) the formal recipe gives rise to (one should be aware that to execute
a mapping for concrete solutions,the proper adjustment of the time interval boundaries
is indispensable):

idyp = —DOY — 8,8, = DAB,

i0p = DAY — 9,8 = —DAD (1.19)
with it — t. Then

Bz, 1) = [0 expliS))(z, 1) = / d2'G(z — o', tyb(z', 0)

G(z — 2',t) = (4niDt)™/? exp[— (34:;;)2] (1.20)
0.(x,t) = / dz'h(z — ', t)8.(z",0)
h(z — 2',t) = (47 Dt)"/? exp[— -(14;;;'):]

where the imaginary time substitution recipe

h(z — 2',it) = G(z — ',t) , h(z — 2',t) = G(z — 2',—it) (1.21)
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seems to persuasively suggest the previously mentioned "evolution in imaginary time” no-
tion, except that one must decide in advance ,which of the two considered evolutions:the
heat or Schrédinger transport,would deserve the status of the "real time diffusion”.

At this point let us recall that given the initial data

$(z,0) = (ra?) M ezp(~ ) (1.22)

the free Sch}bdinger evolution ) = — DA implies

¥(z,t) = ("‘72)(02 +2iDt)"" /2 ezp| - 2(0_252;'—01)] (1.23)
On the other hand , we have
— o? z?
YP(z, —it) = O.(z,t) = (7)”‘(02 +2Dt)"exp |- m] (1.24)
Let us confine ¢ to the time interval [-7'/2,T/2] with DT < a®.Then we arrive at
30.=DN0, , 38=-DAG "% <t< % (1.25)
7= (Z)a? 2Dt M eapl - s
g 2(a? — 2Dt)
where 4 g
A@t) = @)@t = [ eopl - o] (129)

with the interesting, and certainly unpredictable if to follow the traditional Brownian
intuitions, outcome: p(x, —T/2) = p(z, T/2) However strange this probabilistic evolution
would seem, it simply refers to a conditional Brownian motion (in fact the Brownian
bridge with smooth ends),and clearly nothing like the”imaginary time diffusion” is here
involved. We have rather executed a mapping from one real time diffusion to another,
with the incompatible dynamical principles at work.

2. Finite difference discussion of Markovian diffusions,local conserva-
tion principles and the drift dynamics

In the general theory of Markov diffusions the forward drift b(z,t) of the process
is frequently viewed as the stochastic control field,whose properties (smooth, externally
driven field) can be quite divorced from the random noise proper.Indeed, if we assume
b(z,t) to be a priori given from the beginning,for all times of interest (¢ € [to, T]),then
the forward Fokker-Planck equation

Op = DOp — V(bp) , p(z,t0) = po(z) (2.1)
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gives rise to the well defined Cauchy problem for p(z,t).Apparently,the sole knowledge of
b(z,t) (given po(z)) determines both the evolution of p(z,t) and the fundamental law of
random displacements p(y, s, z,t),s < t for the case (2.1). Indeed,by general arguments
(Ref.9,chap.4) the forward transition probability density for short times can be deduced
from (2.1):

[z —y — by, ) A

p(y,t,z,t + At) ~ [4x DAL exp|— S ]

(2:2)
under the assumption 0 < At « t, and via the chain rule (with the Chapman-
Kolmogorov equation consecutively utilized ) gives rise to the standard(®!%! path integral
expression for the transition density:

p(y,s,z,t) = (2.3)
1 n-1
limA,_.o/dzl.../dz,._l(fiwDAt)'"/’ ezp[-m kz_; [zk-H — b(Zk, tk)At]Z]

where At = (t — s)/n, 20 = y, z, = z,and the At partitioning of the interval [s,
becomes finer with the growth of nin — co = At — 0.

The finite time increment analysis of the diffusion process is a standard(®213] and
quite efficient tool.Let us choose an arbitrary point z € R! and investigate what happens
in the course of the Markovian diffusion in its vicinity,at different time instants. We shall
consider sample paths originating from x at time t (in terms of particles it pertains to the
repeatable sampling series of the single particle flights).An average over all points,reached
by them time At later,is given by the conditional mean value of the random variable

X(t+ At):
<X >(z,t+ A1) = /p(z,t,y,t+ At)ydy ~ z + b.(z,t)At (2.4)

with X (t+ At) = y. Now let us consider sample paths converging to a common endpoint
x at time t,and evaluate the conditional expectation value over all points of origin for
these paths at time t — At:

<X>(z,t—At)= /yp.(y,t — Atyz,t)dy ~ & — bu(z,t)At (2.5)

p.(y,t - At,.’t,t)p(l‘,t) = p(y,t - At)p(y,t - At,.t,t)

with X(t — At) = y. We shall use the standard stochastic notations of Refs.4-8 in
below.Let X(t) be our random variable.Then ,in terms of left and right (mean) time
derivatives for the diffusion, we can write

b(z,t) = (D+X)(t) , bu(z,t) = (D-X)(t) , X(t)==< (2.6)
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Given the local drift b(z,t).Any random displacement of a particle from the point x
comprises the same for each sample path purely deterministic contribution b(z,t)At, and
the essentially unrestricted noise component v2DAW (t).In virtue of the It6 calculus,
the forward Fokker-Planck equation defines the time developement of p(z,t) once the
initial probability density po(z) of the random variable X (ty) = z is specified. Let us
consider an ensemble of random paths,all of which are to leave x at time t before arriving
at their points of destination X (¢ + At) time At later.The mean local velocity (forward
drift) in x at time t equals b(z,t),and all outgoing paths have an identical deterministic
contribution .However we know that after time At the field of local drifts is no longer
b(y,t) but b(y,t + At).Consequently,if we would allow our sample paths to continue the
random propagation in the subsequent time At interval,then each of the sample paths
segments would display the new deterministic contribution, now depending on the new
point of origin.If we know the field of drifts b(y,t + At),then we can evaluate how the
mean velocity (drift) of the diverging from x path bundle does change in time:

b(z,t) = b(X(t + At),t + At) = b(z,t) =< b> (z,t + At) (2.7)

<b>(z,t+At) = /p(:c,t,y,t + At by,t + At)dy = b(z,t) + (Dyb)(z,t)At =

= b(z,t) + (DI X)(t)At

with X(t) = z.

Let us proceed analogously with an ensemble of random (sample) paths X(t —
At) — z at timet which originate from randomly distributed sources but after time At
(at t) all of them are bound to converge to the same point x.For each particular sample
path the deterministic contribution depends on the point of origin,while for the continued
(from x at t, in the next time interval of duration At) motion ,the outgoing deterministic
contribution is to be the same (b(z,t)) for all paths. Consequently,the forward drift
change in time can be evaluated along the considered (sample) path ensemble:

(X (t — At),t — At) — bz,t) >< b> (z,t — At) - bz, 1) (2.8)

<b>(z,t—At) = / by, t — At)pu(y,t — At,z,t)dy ~ b(z,t) — (D-DyX)(t)At

The change in time of the backward drift along the diverging from x at t trajectories
comes out as well:

bu(z,t) = bu(X(t + At),t + At) < b, > (z,t + At) =
< by > (z,t + At) ~ bo(z,t) + (D4 D-X)(t)At (2.9)
while for paths converging to x at t we have:

b.(X(t — At),t — At) = bu(z,t) =< b, > (z,t — At) ~ bu(z,t) — (D2 X)(t)At
(2.10)
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;mpare e.g. also arguments of Refs.3,13. At this point it is not useless to mention that
for a smooth function f(X(t),t) of the random variable X(t) , the left (backward) and

1 right (forward) time derivatives in the conditional mean read:

i

i (D+f)(X(t),t) = (9 + bV + DA)f(X(t),1)

(D-N)(X(t),t) = (8 + b.V — DA)f(X(t),1) (2.11)
X(t)=z,b= b(X(t),t), b. = b.(X(t),1)

Let us,quite formally ,instead of b and b, introduce the new local velocity fields u
- and v according to

b=Di;X=v+u , bo=D.X=v-u (2.12)

Then,the mere consequence of (2.11) is that the mean acceleration terms can be repre-
sented as follows

DX = Dy(u+v) =0v+ (u+v)Vo+ DAv+du+ (v+u)Vu+ DAu  (2.13)
D_DyX = D_(v+u) = v+ (v—u)Vv—DAv + du+ (v — u)Vu— DAu
DiD_X = Dy(v—u) = 0+ (v+u)Vv+ DAv — du — (v + u)Vu — DAu

DX = D_(v—u) = v+ (v—u)Vv—DAv — du — (v — u)Vu + DAu

We shall restrict further considerations to these Markovian diffusions only ,for which
one of the velocity fields introduced above,u = }(b— b.) takes Nelson’s osmotic velocity

form("#]

Vo(z,t)
p(z,t)
and accordingly v = v(z,t) deserves its (explicitly ensemble by origin ) name of the

current velocity. The assumed from the very beginning Fokker -Planck equation for the
diffusion

U ="ulEt)= D (2.14)

Op = DOp — V(bp) = —V(vp) = Ou = — DAv — V(uv) (2.15)

allows to rewrite formulas (2.13) in the surprisingly simple and familiar (kinetic theory
associations should be born immediately) form:

DiX = 8w + vVv + %VQ = DX (2.16)

while 1
D_DiX = (0w + vVv — ;VQ) — 2(DAv + uVv) (2.17)

D,D_X = (v +vVv — %VQ) + 2DAv + uVv)
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Apparently all four acceleration expressions in the above do refer to the same diffusion
process,and describe its different mean dynamical features.

We shall loosely adopt the kinetic (gas) theory lore to discuss local (in the mean)
properties of the ensemble of sample paths of the diffusion process. Let us think in terms
of a "swarm” of sample points (particle locations in the repetitive series of single particle
trials) which at time t — At are distributed with the (conditional) density pa(y, t—At, z,t)
about the mean position z — b.(z,t)At.At time t — At the diffusion involves a field of
backward drifts b.(z,t—At) ,s0 that at each randomly selected location y = X (t—At) we
know the mean velocity of incoming to y particles ,hence the way particles are delivered
o y at time t — At from all surrounding points of origin (left at time ¢ — 2At).So,
< b. > (z,t — At) is the mean velocity of incoming particles evaluated over the whole
ensemble of random locations X (t — At) from which random paths are next bound to
converge to x at time t. In the same way we can proceed with b(z,t) i.e.the mean velocity
of outgoing from a given point particles.Then < b > (z,t + At) is the mean velocity of
outgoing particles evaluated over the "swarm” of random points X (¢+At),hence referring
to the time interval [t + At,t + 2At] of the path bundle evolution.We have:

t—20t > t— At >t —t+ At — t 4+ 2At (2.18)

bu(z,t) = < b > (z,t - At) = (D2 X)(t)At = (D2 X)(t)At =
<b> (z,t+ At) — b(z,t) (2.19)

Let us recall that in the course of the previous discussion ,no explicit information was
utilised about the particular dynamics of the forward drift b(z,t).As mentioned before
;the drift might in principle be an arbitrary smooth function (the control field for the
Markovian diffusion) of x and t.We realise however that the above purely stochastic
processing is insufficient to generate b(z, ¢+ At), given the data at time t.For this purpose
we must know 9;b = dyu + O;v. Because of the assumption (2.14), dyu comes out from
the Fokker-Planck equation for the density p

O = —DAv — V(uv) (2.20)

and the only freedom left in the developed stochastic formalism,pertains to d(z,t).Whatever

is the dynamics expected (demanded) from b(z,t) ,the way it can be incorporated is
through the formulas:

(D2X)(t) = (D2X)(t) = do + vV + %VQ = F(z,1) (221)
%(D+D_ + D_D,)X(t) = 8w+ vVv— %VQ = G(a,1)

G(at) - Fla,t) = - 29Q(a,1)
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where F(z,t),G(z,t) are quite arbitrary, but not independent smooth functions,responsible
for all acceleration-looking phenomena admitted by the Markovian diffusion (compare e.g.
also Refs.3,13). The formulas (2.21) provide us with a sound basis for Nelson’s stochas-
tic acceleration postulates (the Nelson-Newton laws,whose equivalent version is given in
terms of (1.2),(1.3)).

Would we have imposed the dynamical restriction (the local drift conservation law
respected by the diffusion):

(D2X)(t) =0 = (D2X)(t) (2.22)

B + vVv = — '—L—VQ (2.23)

then ,in the finite time difference regime,we have a working procedure to establish how
the current velocity v(z,t) and hence b(z,t) changes in time between ¢ and t + At:

1
v(z,t + At) ~ v(z,t) — (vVv + ;VQ)At (2.24)
given the data v(z,t),p(z,t) at the earlier moment.Apparently:
2
F(z,t)=0 & G(z,t) = — ;Q(z,t) (2.25)

and the admitted class of diffusions is much broader than the Brownian motion proper,see
e.g.Ref.6 and Ref.15 in particular for a discussion of the conditional Brownian motions.
A more general discussion of diffusions consistent with the dynamical constraint:

F(z,t) = %VV(I) & G(z,t) = %V[V(z) - 2Q(z, 1)) (2.26)

can be found in Refs.5,6,16,17 under the name of the ”Euclidean quantum mechanics”.In
the above V(x) is considered to give rise to the traditional force field —;:;VV = F
hence it is worth emphasizing that it appears with the "wrong”(Euclidean) sign :on the
purely physical grounds it generally corresponds to the replacement of the problem with
attracting forces by this with the repulsive ones.

If we decide (following Nelson) to investigate the conservative forces merely,then
in principle we can introduce the following dynamical constraints:

1
D X = DX = :I:%VV & %(D+D_ +D-D)X = —V(V $2Q) (221)

1
%(D+D_ + D_Dy)X = i%VV & DAXi= DX = ;;va +V) (2.28)

However,by general arguments (see e.g.Ref.6) we know that for continuous and bounded
from below potentials,the Markovian diffusion process is followed by the individual par-
ticle if either:

V(V -2Q)

1 1 gyl
DiX=D X< SV §(D+D_ + D_D)X = T
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1 1 1
DiX=DX=—V(2Q - V) & 5(D4D-+ D_-D)X = -—VV (229

holds true as the dynamical restriction (in fact the Nelson-Newton law) on the time
developement of the forward drift b = u + v. Irrespective of whether we adopt Nelson’s
dynamical restrictions or proceed more generally with relatively arbitrary F(z,t),G(z,t)
,we can devise a recipe for the forward drift at the future time instant,given the presenta
data.In particular with the choice (2.22) we arrive at:

b(z,t + At) ~ b(z,t) — (Vv + —’I;VQ)(z,t)At — [DAY + V(w))(z, )AL (2.30)

and apparently we have b(z,t+ At) ~ b(z,t) + (0v)(z, t) At + (Ou)(z, t) At, as should be.
We realize that the dynamical restriction (local drift conservation law) (2.22) does indeed
specify the time developement of , otherwise arbitrary,forward drift b(z,t). However , as
observed before in more general context, a straightforward consequence of (2.26) is that
another momentum (velocity) balance formula is respected by the diffusion process as
well

%(D+D_ +D_Dy)X(t) = — %VQ (2.31)

What is it about ?

Let us recall that < b > (z,t — At) averages the outgoing velocities at all random
locations X (t — At) of origin, for random paths which are bound to converge to x at
t.Hence < b > (z,t — At) stands for a valid tendency of the uniform rectilinear motion
attributed to the particle "swarm” in the time interval [t — At,t],while b(z,t) is to be
the one in the subsequent time interval [t,¢ + At].We have

t—At—-t—t+ At =><b> (z,t — At) — b(z,1) (2.32)
while for the backward drift we find
t—At—t—ot+ At = b(z,t) o< b. > (t + At) (2.33)

The causal sequences (2.32),(2.33) indicate that in the time interval [t — At,¢], in the
vicinity of the chosen (reference) point x, we have coexistent:

(i)the flow of sample paths directed towards x and destined to reach (cross) x at
time t,its mean velocity (of the incoming particles) equals b.(z,t),and the flow originates
at time ¢ — At from randomly distributed points X (t — At)

(ii)a multitude of outgoing flows ,which send particles away in random directions
from sample points X (¢ — At) surrounding x,their "swarm” average equals < b > (z,t —
At) . Following intuitions of Ref.13,let us denote

v(mt) = %[< b> (2,t - At)+ bu(z, 1)) (2.34)
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the average (inward and outward flows combined together) velocity of sample motions
occurring in the vicinity of x in the time interval [t — At,t]. The analogous quantity for
the subsequent time interval is
1
vi(z,t) = -2-[b(z,t)+ < b > (z,t+ At)) (2.35)

so that the local velocity (momentum) balance identity reads:

vi(z,t) — v_(z,t) = —%VQ(z,t)At (2.35)

which connects the average flows about x in time intervals [t—At, t] and [t, t+At],respectively.

The VQ(z,t) rate of change per At is here a consequence of the assumed local conser-
vation law (2.22).

The strict drift conservation law (2.22) can be written as
bu(z,t)— < b > (z,t — At) = 0=< b > (z,t + At) — b(z, 1) (2.36)
while an alternative to (2.22) strict local conservation law:
B () v (5, 808 %(D+D_ + D_Dy)X(t) = 0 = Bv + vVo — %VQ (2.37)
has a microscopic version
b(z,t)— < b> (z,t — At) = —[< b, > (z,t + At) — bu(z, 1)) (2.38)

While (2.36) tells us that particles are delivered to x with a conserved mean (over the
ensemble of converging paths) velocity, and the same conservation law is shared by the
outgoing flow,the microscopic conservation law (2.38) tells us something strikingly dif-
ferent.A very specific dynamical equilibrium is locally maintained in the course of the
diffusion:if the outgoing drift drops down between ¢ — At and ¢, then the incoming drift
will show up the growth between t and ¢ + At in the very same rate,and in reverse.

Consequently (2.38) embodies the definite action-reaction phenomena in the causal
sequence t — At — t =t — t + At. Let us invoke the local Brownian recoil principle of
Ref.1 at this point: ”If Brownian fluctuations due to the medium produce an average field
of local particle flows v(z,t) ,then an average field of local drifts —%(z,t) is induced in
the medium itself. The —v local drag of particles does compensate the mv local momentum
associated with (transferred to) the ensemble of Brownian scattered particles” We denote

<b> (z,t— At) = bz, t) + AT(z,8) < b> (z,t — At) »< b> —AT=b  (2.39)

According to the Brownian recoil principle, the mean momentum information cannot
simply evaporate .We demand(! the validity of the momentum conservation law on all
conceivable scales adopted for the investigation of the individual particle scattering on
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the medium constituents. Hence (2.38) tells us that the outgoing particle flow A% is being
built in the interval [t — At, t].Since the flow A is transporting particles away from the
area surrounding x, it cannot affect b,(z,t),albeit it must contribute to < b, > (z,t+ At):

ba(z,t) = b, + AT =< b, > (2, + At) (2.40)

The formula (2.38) is a microscopic statement that the local Brownian recoil principle
governs the diffusion.It gives account of the detailed structure (strictly observed momen-
tum cohservation law) of the particle-random medium interaction.Hence we deal here
with a universal space-time independent property of the medium.Therefore it can be
taken as a defining feature of the environment which is capable of generating a specific
class of Markovian diffusions.Quite alike the Brownian law of random displacements,
which is another way to tell that the Brownian medium remains statistically homoge-
neous. The arguments of Ref.1 imply here that the individually negligible phenomena
on the ensemble average,give rise to the highly non-trivial turbulent medium structure,
which is eventually responsible for the quantum mechanical looking evolution of particle
ensembles (wave order from the corpuscular chaos).

3. Drift dynamics in terms of dynamical semigroups

In case of conservative force fields, the dynamical constraints defining the appro-
priate Markovian diffusion read:

DX = -rl;vv = DX (Zambrini) (3.1)

X = -:;V(2Q-V) = D*X (Nelson) (3.2)

Let us once more emphasize that they express the very same dynamical content as the
more familiarl™® Nelson-Newton laws:

-;—(Di + D)X = %vv ( Zocnbring) (3.3)

%(D+D_ 4 D.DAK - ‘nL;VV (Nelson) (3.4)

The important observation is that the potentials explicitly present in (3.1),(3.2) are pre-
cisely the ones defining the semigroup dynamics,whose behind-the-scene presence is indis-
pensable (Ref.6) for a rigorous investigation of the Markov-Bernstein diffusions.Provided
we take V(z) to be continuous and bounded from below,and require the same property
from 2Q — V .The latter demand is highly non-trivial and seemingly impossible to control
because of the explicit p(z,t) dependence mediated by Q(z,t).However a careful exam-
ination shows!® that our demand amounts to selecting a class of diffusions which obey
the finite energy restriction:

/p(ac,t)[%(u2 + v¥) + V]dz < o0 (3.5)
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Assume to have given the Wiener measure (in fact, the heat kernel characterising
the free Brownian diffusion).Let ®(X(t),t) be an arbitrary continuous and bounded from
below function of the random variable X(t) of the Wiener process.Let y at time t be the
source point for random paths of the process, while x the terminal one for all of them,at
time ¢ > s.We shall follow the finite time difference procedure in the spirit of (1.7),but
with b = 0) and define:

At=(t—s)/n,t;=jAt,j=0,1,..,n,to=8,ta=t, X(t;)=2;, To=y,ZTn==
(3.6)
Let us define the following integral (with respect to the conditional Wiener measure,see

Refs.18-20):

\ i 1 +00 +00
K(R,y,s,z,t) ™ hmn-ooom s dzl... rad d:t,,_l

n-1
zi 1 (zj4r = zj)’])

DAL g‘m*@“f'"ﬂm DA

ezp (- (3.7)

; It is well known that this (Feynman -Kac ) formula defines the semigroup kernel
in the sense that (D = h/2m might be set for comparison)

1 :
0K = DAK — m&(:,t)l\’ y lim K(R;y,s,2,t) = §(z —y) (3.8)

!Jolds true.We are here in the situation more general than this originally!® set for the
u.lvestigation of the Markov-Bernstein diffusions.One should really keep in mind that
time dependent potentials R(z, t) are allowed, in conformity with the general case (2.25).

As a dynamical semigroup kernel,in addition to (3.8), K(z,t) solves:

1
2mD

- as well (we assume R(z,?) = R(z, —t) here to secure the time reversal invariance). From
now on we shall use the notation:

8K = —DAK + —R(z, 1)K (3.9)

K(V;y,s,-‘t,t) = h(yvsvzat) B K(2Q = V;y,s,:c,t) o k(.‘/vs’zat) (310)

. Assume to have given a pair of diffusion equations in duality (i.e. mutually time
adjoint) for real functions 8, .:

= o V — o= = V =
ac = * T o Vs = - T
0, DAG, 2mD0 , O DAG + 2mD0 (3.11)
D is the diffusion constant, m mass of a particle in the course of the diffusive trans-

port.By our assumptions about V we have granted the existence of the strictly positive




184

semigroup kernel generated by the operator H = —2mD?*A+V .Let h = h(y,s,z,t),s < t
be the fundamental solution (dynamical semigroup kernel) of the diffusion equations
(3.11).Then,the initially chosen function . (z, —T/2),T > 0is propagated forward 0.(z, t) =
[ 0.(z,=T/2)h(z,~T/2,z,t)dz , t > —T/2 while the terminal choice of 0(z,T/2), T >0
allows to reproduce the past data O(z,t), t < T/2 through the backward propagation
0(z,t) = [ h(z,t,y, T/2)6(y, T/2)dy. In virtue of the semigroup property of the kernel A
we have also :

0_:(z,t) = /F.(z,s)h(z,a,z,t)dz , O(z,s) = /h(z,s,z,t)a(z,t)dz

where —T'/2 < s <t < T/2 , hence a solution of (3.11) with the prescribed boundary
data at +7/2 might be given.

By Ref.6 , we have here determined the Markov -Bernstein stochastic process, which
allows to propagate (hence predict the future and reproduce the past ,given the present)
the probability distribution

(3.12)

p(z,t) = 0(z,t)0.(z,1) (3.13)

respectively forward and backward in time .The statistical predictions about the future
can be accomplished by means of the forward transition probability density

y2:t) 0(y,t)

i’.(:"'a 3, yvt) e h(.’t, $Y, 0( 3) (314)
while the past can be statistically reproduced by means of the backward density
0.(z,
(e, 0t) = Kz, 0,0 o) (3.15)

0.(y, 1)

for the diffusion with fixed (!) boundary probability distributions p(z, —7'/2),p(z,T/2).

With p, p. in hands ,we can straightforwardly evaluate the conditional expectation
values which are necessary to establish the mean forward and backward derivatives in
time for functions of the random variable X (t).The drifts read herel®!

ve.

(D_X)(t) = bu(z,t) = — 200— (3.16)
(D)0) = bz, ) =20 (3.17)
so that v = (b +b.) and
8ip = —V(pv) = DAP — V(pb) = —DAP — V(pb.) (3.18)
If we define
0=ezp(R+75), 0. =exp(R-75) (3.19)
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vith R, S being real functions ,then

7=2DVS , u= %(T; —-b.)=2DVR (3.20)
nd (3.18) can be rewritten as follows
%a‘ﬁ * —%AS‘ — (YR)(V3) - 8@ = —DAT — V() (3.21)

If we assume that the the continuity equation is valid,then the necessary consequence
of (3.11) is that!?% the modified (by the presence of the extra term) Hamilton-Jacobi
equation holds true

V = 2mD(8,8 + D(VS)* + D[(VR)* + AR)) (3.22)
nd 7 = 00, implies
2mD*(VRY + AR =2m D’Afl, iy (3.23)

Ezcept for the sign inversion @ has the familiar and previously identified form of the de
Broglie-Bohm ”quantum potential” see e.g.” Refs.1,14,15. Apparently we can argue here
0 reverse (we adopt the stronger version of the Nagasawa argument!?? ;given the conti-
nuity equation and the modified Hamilton-Jacobi equation, then the system of diffusion
equations in duality (3.11) follows. It is easy to verify that the gradient form of (3.22)is
equivalent to the previously discussed Nelson-Newton law

0T = 2DAT + low + Loy + Llov DX =D'X = lov (3.24)

2 2 m m
Let us now consider another pair of diffusion equations in duality (actually a non-trivially
coupled nonlinear system)
1 1

00 = DAG. — -2-—3(20 -V)o. , 06=—-DA0+ -271—1—)(2(2 -V)o (3.25)
where V is the same as before , while Q = 2mD?*(Ap'/?)/p'/?, p(z,t) = O(z,t)0.(z,t)
differ from the previously utilised objects by the absence of dashes,which is to ditinguish
olutions of (3.11) from these of (3.25). In virtue of the semigroup argument applicability
(provided we demand 2Q — V' to be continuous and bounded from below!® ) all previous
_considerations can be repeated through replacing the diffusion kernel K(z,s,y,t) by the
nonlinear diffusion kernel k(z,s,y,t) of (3.25). The transition probability densities (no
~dash !) p, p. allow to derive the new drifts b, b,.The continuity equation in the canonical
form 8,p = —V(pv) implies that as a consequence of (3.25) we arrive at the identity
(which is a modified version of the Hamilton-Jacobi equation again)

2Q -V = 2mD[3,S + D(VS)|+Q —

(8 + vV)v = -'-;-V(v -Q) (326
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to be compared to the previously considered (dashed case ) (3.22),(3.23). Let us here
observe that the identity (3.26) implies 2Q = 2V + 4mD[8,S + D(VS)?] hence

1 s 3
—(2Q — V) = 5—=V +20,5 + 2D(VS) (3.27)

2mD
which allows to replace (3.26) by the equivalent identity,where the original potential
725V acquires a correction 28,5 + 2D(VS)?.While (3.26) was utilised by Zambrinil®l,
the system with the corrected potential was utilised by Nagasawal*’ however without
notifying that the equivalence is established when diffusions with creation and killing are
replaced by the Markov-Bernstein diffusions. It is well known that equations of conti-
nuity and the Hamilton-Jacobi problem (3.26) do uniquely (Madelung representation)
determine solutions of the Schrodinger equation

" mD? .
i(2mD)dy = [_TA +V]yp , ¢(z,t)=exp(R+15)(z,t) (3.28)

but now the solutions of the diffusion system (3.25) do determine R and S in the above

LListi0

- %ln(oo.), § = 3in(;) (3.29)
For a discussion of the multiply connected (due to nodal surfaces) configuration space see
Ref.6.As before all arguments go in reversesince the standard Madelung route applies:
once we know that the continuity and Hamilton-Jacobi equations holds true, we have
the system of diffusion equations (3.25) as the equivalent description of the Schrédinger
one.One immediately verifies that the Nelson-Newton law }(DyD_ + D_Dy)X(t) =
—LVV comes out as the gradient form of (3.26). The stochastic acceleration formulas,
according to our previous discussion of Section 2, play the role of the momentum (ve-
locity) balance equations in the mean for stochastic flows, and by the finite difference
arguments give an insight into the random particle transport phenomena.However the
knowledge of gradient velocity fields u, v (%, respectively) is insufficient for a unique re-
construction of the underlying stochastic diffusion theory. The intrinsic ambiguity of the
Nelson-Newton laws was bypassed by us in the discussion of Section 2, but not overcome.
There , the distinctively alien to each other particle-random medium interaction mecha-
nisms were found to be responsible for the drift dynamics,and we know that the Cauchy
problems (1.1),(1.2) and (1.1),(1.3) respectively , do uniquely specify the evolution of p
and v (and hence b) given the initial data po(z),ve(z). On the other hand the potentials
R, S (R,S) for gradient velocity fields u,v (%, ) are the primary entities in the diffusion
semigroup formalism.Apparently the passage from S to 2DVS = v and the gradient
operation necessary to derive the stochastic acceleration formulas in this framework,do
enforce a certain loss of the differentiation between various quantities provided by the
primordial diffusion equations in duality.

Let us consider our initial Cauchy problems (1.1),(1.2) or (1.1),(1.3) to specify the
dynamics in a fixed finite time interval [to,T).Then ,given po,vo, we have the terminal

187

~ distribution pr(z) in hands.At this point we shall address the problem originally due to
" schrédinger["],whose refined description can be found in Refs.5,6,15-17:

Given the boundary probability distributions po(z) and pr(z) .Can we derive the

t stochastic process interpolating between them ?

The answer can be given in the framework of the Bernstein stochastic processes.If

- we demand the interpolating process to be Markovian (strictly speaking the Markov-
~ Bernstein) then the interpolating process is specified uniquely if the joint probability
~ distribution

0'(1" tO)K(Iv t07 y, T)o(yv T) e m(z, y)
[ iy =plate) [ miav)de = piw.7)

(3.32)

~ can be found ,where K(z,to,y,T) is a certain strictly positive dynamical semigroup

kernel and 6.(z,10),0(y,T) are two real and non-zero functions of the same sign. By
specifying the kernel to coincide either with our k(z, s, y,t) or h(z,s,y,t) we have indeed
given the evolution of 0.(z,t),0(y,t) in our prescribed time interval, provided 6.(z, o)
are the initial data for the forward evolution, while f(y,T’) are the terminal data to be
propagated back in time by the backward evolution. These data must be found as a
solution of the Schrédinger system (3.32), once the kernel K is chosen . In virtue of
the uniqueness of the solution, we realize that both R(z,t) and S(z,t) are specified .It
however means that any of the evolution scenarios of Section 2 is realized not by a single
but by many distinct Markov-Bernstein stochastic processes all of which belong to the
same (dynamical) equivalence class.They interpolate between the given pair of boundary
densities po(z), pr(z) :each representative being uniquely specified by the two potentials
R, S (R,S respectively).

Remark 1 : It is interesting to notice that m(z,y)AzAy or more generally

m(B, B;) = / dz

B B;

dym(z,y) (3.33)
stands for the probability that a particle leaving the area B; at time o will reach the
area B, at time T'. This concept is of profound importance from the point of view of
experimental procedures where monitoring the particle in the course of its propagation
is either not easy ,or impossible without destroying the (otherwise arising) experimental
outcomes ,like e.g. in case of the interference experiments. What is usually accessi-
ble,is the information about the initial frequency distribution (we approximate it then
by an appropriate probability density) due to the chosen statistical ”state preparation
Procedure” ,and about the terminal frequency distribution (photo-plate data or numer-of-
particles data like in most neutron counting experiments) which is again approximated
by a certain terminal probability density.

Example 4: Brownian motion in a field of force as the Bernstein diffusion

To make the role of dynamical semigroups in the presented formalism more ex-
Plicit,we shall make an illuminating exercise to demonstrate that the very traditional

! ]
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Brownian motion in the external force field,if considered in the Smoluchowski approxi-
mation,does give rise to a rich class of Markov-Bernstein diffusions. The Fokker-Planck
equation governing the time developement of the spatial probability distribution in case
of the phase space noise with high friction, in the Smoluchowski form reads

1 :
Owp = DlOp - V(bp) ) b(zvt) o 'EF(::L ’ pﬂ(z) - p(xao) (334)
where J is the friction constant and the external force we assume to be conservative

F(z) = - V&(z) (3.35)

It is well known that the substitution

8(=),
2Dp

converts the Fokker-Planck equation into the generalised diffusion equation for 0.(z,1)

pla,t) = 0.(z,1) exp( - (3.36)

V(z)
2mD
where (the mass m was here introduced per force ,but with a very concrete purpose of
embedding our discussion in the formalism of the "Euclidean quantum mechanics”)

m B E2
B 28
Since F%, D, 3 are positive, a sufficient condition for the auxiliary potential V(z) to be

bounded from below (its continuity is taken for granted) is that the source term g(z) in
the familiar Poisson equation

00. = DAG. —

6. (3.37)

V(z) = + DVF) (3.38)

VF=-0Ab=g (3.39)

is bounded from below: g(z) > —c¢,¢ > 0, cis finite. Under this boundedness condition,we
know that the equation(3.37) defines the fundamental semigroup transition mechanism
underlying the Smoluchowski diffusion.Indeed, we have in hands the well defined semi-
group operator exp[—t(—DA + V/2mD)], whose integral kernel is a strictly positive
solution of (3.37) with the initial condition limy_o h(y,0,z,t) = é(y — z).

The kernel is defined by the Feynman-Kac formula (3.7) (in terms of the conditional
Wiener measure,which sets an obvious link with the Brownian propagation). It is trivial
to check that h(y,s,z,t) propagates f.o(z) into a solution of (3.37)

P p.,(z)ezp[;’l(;;]_.o.(z,z) . / h(y,0,2,8)0.(y,0)dy  (3.40)

while,apparently

0z,0) = capl-350) = [ ha. by, T)or(v)dy = 0r(2) (3.41)
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- all t € [0,T).Indeed 0(z,t) solves

Vv

i 00 = —-DA0 + 2mD0 (3.42)
where 9,0 = 0 and
i (vey ne, v
4Dpr 28 G i)
" Since the deterministic evolution governed by the Smoluchowski equation gives rise to
a definite terminal (in the interval [0, 7]) outcome pr(z) , given po(z),a straightforward
inspection demonstrates that the Schrodinger system is solved by 0.o(x) and 07(z) with
the kernel h(V;y,s,z,t). As a consequence , we have completely specified the unique
‘Markov-Bernstein diffusion interpolating between po(z) and pr(z) ,which is identical
th the Smoluchowski diffusion itself.We know here the transition probability density
g. the law of random displacements modified by the presence of external force fields)
,8,2,t) in the form (3.14), which is responsible for the most likely particle propagation
cenario. We have also automatically satisfied the local conservation laws (1.1),(1.2). In
case,apparently

DA = [A—L (3.43)

S DV(—— Bl = 'EW Dﬂ — (3.44)

0 = VI5(V@)p] + DAy

~ to be compared with the Smoluchowski equation.

Remark 2:The formally oriented reader might benefit from the observation that
~ the whole family of diffusions affiliated® to the Smoluchowski process in a force field is
- embedded in Zambrini’s ”Euclidean quantum mechanics”.A formal recipe of the "imagi-
"-,nn.ry time transformation” allows to map ”Euclidean” into Nelson diffusions on the sound

Example 5:Coherent state dynamics (harmonic potential)

b To conclude our discussion ,we invoke a notorious harmonic oscillator problem and
& 'the related coherent states .Our aim is to consider their Schrédinger evolution from the
5 diffusion process viewpoint (see e.g.Ref.23). However,we shall address the issue from a
- new perspectivel*”*). We depart from the general stochastic differential equation (1.6) and
‘) the related Fokker-Planck equation (1.7) for the transition probability density.Following
Stratonovich® let us transform the transition density (compare e.g.(3.14),(3.15)) by
means of the substitution p(y, s, z,t) = k(y, s, z,t)exp®(y, s)/exp®(z,t) ,which under an
- assumption that b(z,t) is the gradient field

b(z,t) = —2DV(z,t) = —[ 5+ Vbl = D[(Ve)? - Ad] (3.45)
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allows to replace the Fokker-Planck equation for p by the generalised diffusion equation
( the dynamical semigroups enter the game)

Ok = DOk — (—8,® — D[A® — (VO)))k (3.46)

where lim,_,k(y,s,z,t) = §(z — y).Its (to be strictly positive) solution can be repre-
sented in terms of the Feynman-Kac formula (3.7),which integrates contributions from
the auziliary potential

% =2D(-0,® — D[A® — (V®)?)) = —2D8,® + DVb + %b’ (3.47)
with respect to the conditional Wiener measure.Hence,with the given ® and the integral
kernel k(y,s,z,t) of the dynamical semigroup operator ezp[—.‘,""—Df:(ZszA — R)du]
,we have the appropriate transition probability density for the diffusion in hands. In
the particular case of the harmonic oscillator,the coherent (minimum uncertainty wave
packet) solution of the Schrédinger equation i9p = —DAY + Apmw?z®) has the
canonical form

¥(z,t) = exp(R +iS)(z,t) = p"/*(z,t)ezp[iS(z,1)] (3.48)

= 1 1 1
plz,t) = (270) ”281‘?[—;;(1' —ga)’] » S(2,t) = —5[epa = Gpaga — mDwi]

In the above 0 = D/w and D = h/2m should be set for comparison with the stan-
dard quantum mechanical notation. The classical phase-space variables display the time
dependence only: ¢u(t) = gocoswt + E-sinwt and pu(t) = pocoswt — mwgosinwt .By
our previous arguments , we know that the stochastic differential equation (1.6) for
the Nelson diffusion associated with (3.48) has the forward drift in the form b(z,t) =
Lpa(t) — wlz — qu(t)] = —2DV®(z,t) where ® = —[S + }inp].All the data needed for
the Feynman-Kac integration (33.7) are given. Let us add that one could as well begin
from the traditional Mehler formulal®), and next utilize the Cameron-Martin theory!*"]
of linear drift transformations (translations) to arrive at the same goal.

Note:lt is perhaps justified to mention my personal past concerning the coherent
states,and their applications to the study of classical relatives of Fermi systems, the iden-
tification of Fermi sectors in the state spaces of Bose systems or the classical-quantum
relationships in nonlinear field theory models®®). The present research has its roots there.
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SOME REFLECTIONS ON COHERENCE AND ION TRAPPINGt
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ABSTRACT

We recall the physical arguments underlying the definition of the coherent
states and review some of their related properties. The problem of ion trapping in
oscillating quadrupole fields leads us to the consideration of a new class of general-
ized coherent states that correspond to the motion of periodically pulsating wave
packets along classical trajectories.

1. Introduction

In the earliest work on wave mechanics by Schrodinger one mystery abides
among its many penetrating insights. The physical meaning of the wave function v,
which lay somehow at the foundation of the new mechanics, remained completely
unclear. Schrodinger turned, seeking clarification, to the analysis of time-dependent
states. He evidently felt that the wave function of a particle represents the structure
of the particle itself in a much more explicit way than we now do, and so he hoped to
find solutions to the wave equation that remained restricted in size and moved along
mechanical trajectories akin to those of classical point particles. He found such a
solution for the case of the one-dimensional harmonic oscillator.! By superposing
the normalized wave functions of the n-th excitation states of the oscillator, using

the coefficients 7’;:7, where A is a real number much larger than unity, he showed
that the resulting wave packet has a Gaussian peak that moves precisely as the
classical oscillator does. What he was doing, in effect, was to give the ground state
wave function of the oscillator a real-valued initial displacement proportional to A
and to observe its subsequent behavior. Since the “width” of the wave function
remained that of the ground state no matter how large the amplitude A was made,
he could see the classical limit of particle-like behavior quite clearly.

This was surely the first example of what we now call the coherent states,
though it dealt with only a narrow subset of those oscillator states (for real rather
than complex A). Schrodinger looked forward, a bit optimistically, to the possibility
of finding analogous wave packets for other mechanical systems. He foresaw, for
example, the construction of a packet that would move about the Kepler ellipses
of the hydrogen atom without spreading, but never found one. That problem has

come back to life again in experimental terms, and we shall surely hear more about
it.

t Assisted in part by a grant from the U.S. Department of Energy.
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