Cauchy semigroups: Nonlocally-induced bound states

(related to nonlocal random motions and their equilibria)

Piotr Garbaczewski (Opole, Poland)

The generator A = 9% /dx? of the standard Brownian motion in B | is locally defined

To the contrary, there exists a plethora of nonlocal generators (and related nonlocal
random processes). Typical examples:

-|A 2 pe (0,2)- Levy — stable driver

\/_hﬂ A2A L+ m2ct — mec2  quasi-relativistic process, for m=0 Cauchy process
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Quiery: How technically can we confine the (exemplary, nonlocal ) Cauchy
process in a finite box (e.g. interval [-1,1]) ? Whatis a nonlocality impact on
the approach to equilibrium and the asymptotic pdf shape in afinite trap ?

Methodology: semigroup versus Feller dynamics

(i) Semigroup input, Levy processes with killing, transition kernels, ,spectral
properties of stochastic processes”, eigenfunction expansions, spectral
solutions for involved motion generators .

(i) We explore an intrinsic connection with standard Feller processes: those are
without killing and do respect so-called natural boundaries (effectively
inaccessible from the trap interior) .

Hint: Depart from the standard problem of the Brownian motion in a box and
try to answer what is actually meant by the Brownian motion inatrap. Next,
address the problem: is there anything similiar in case of the Cauchy process ?




(notes borrowed from the talk by M.
Kwasnicki, IMath Wroctaw Univ. Techn. )

Setting (1/3)

e X:is always a Léevy process in R
e P, E, correspond to Xp =X
e We assume that X; is symmetric

Levy-Khintchine

e VU is the Lévy-Khintchine exponent:
Eo exp(igXt) = exp(—t¥(£))

W(E) = BE? + f (1 - cos(z2))v(dz)

e 3 is the diffusion coefficient
e vis the Lévy measure



Free noise; keep the heat kernel notion in mind (Brownian association)

Setting (2/3)

e Transition density:
pt(x,y)dy = Px(Xt € dy)

e Transition operators:

Pif (x) = Exf(X¢) =j pe(X, ¥)f(y)dy
* Generator: P f
Af = lim
t—0+ t

e Lévy-Khintchine:
FAF(&) = —W(E)FF(E)

N\

The validity of the Fourier multiplier picture is presumed



Restriction to a finite domain D: transition densities no longer integrateto 1.

Setting (3/3)

e First exit time:
Tp=INf{t=0: Xt €D}

Killed process:

X0 —

{Xt when t < Tp
t

o whent=>T1p

Transition density:
pP(x, y)dy =Px(X? € dy) =Px(X; € dy: t < Tp)

Transition operators:
PRFX) = ELf(XP) = | pPtc y)F(y)ay
D

Generator:




Stochastic processes with exterior Dirichlet boundary condition, may be
interpreted in terms of the semigroup dynamics with a singular (infinite well —
type) potential as an additive perturbation.

We can always regularize that problem by passing toa family of monotonically
deepening finite well problems and ask for a deviation of a very deep well
spectral solution from spectral data of the infinite well.

Math. issue: self-adjointness of the generator in the well.

Thatis about: H=T+V, Th = he|V| Cauchy generator equals -T

Confining V=V(x): harmonic or finite well of arbitrary depth

- Levy-Schrodinger semigroups - additive perturbations of
nonlocal noise generators, spectral properties

Spectral solution of the semigroup operator is instrumental for both an
identification of an equilibrium pdf (square of the normalized lowest
eigenfunction) and of the dynamics details of the related Feller process.

Eigenfunctions and eigenvalues of exp(-tH) fully determine the
equilibrating random motion and in particular its near equilibrium
behavior .




Why possibly spectral solutions may be useful ? Answer: good approximate formulas,
control of the asymptotic behavior, known spectral gaps, if in existence.

Eigenfunction expansions for the free Brownian motion — heat kernel issue

For clarity of discussion, it is instructive to invoke explicit examples. We pass to one spatial
dimension and rescale (or completely scale away) a diffusion coefficient. Given a spectral solution
forH =—A+V = 0in L*(R), the integral kernel of cxp{—rﬁ} reads (f — if gives rise to the kernel
of exp{—irﬁj)

klv,x.t)=kix,y, t)= Zexp{—e;f} ﬁb_,-{}-‘]l':ll_?{.r]. (16)

J

Remember that we assume €3 = 0 and the sum may be replaced by an integral in case of a
continuous spectrum. Then one needs to employ complex-valued generalized eigenfunctions, e.g.,
Di(x) = Ppix)=(2m) "~ | exp (ipx). Indeed, if we set V(x) = 0 identically, a familiar heat kernel is
readily obtained

1 ,
k(y,x,t) = [exp(t A)](y, x) = - fﬂxp{—ﬁ-‘f} explip(y —x)dp = (17)

(dmt)~"* expl—(y — x)*/4¢],

in accordance with [exp(— a*p?)exp ( — ipx)dx = (/o) exp ( — p*/4c?), where o = 0. We note
that the kernel of [exp(tDA)] appears after changing the time scale in (17), t — Dr. A formal

identification D = 1/2 gives the kernel that is often met in the mathematical literature and corresponds
to (1/2)A instead of A.



The Ornstein-Uhlenbeck process: semigroup vs Feller motion scenario

Consider H = (1/2)(—A +x2 — 1) (e.g., the rescaled and ( — 1) renormalized harmonic os-

cillator Hamiltonian). The integral kernel of exp(—tH) is given by a rescaled form of the classic
Mehler formula:'- 16

Ky, 1) = [exp(—tH)(y, x) = —=expl—(2 +37)/21 Y () Hy(x) expl—nn) = (18)

N ~ 2"n!

—1/2 I 2 7 (x — E_I}'L]]
(i1 —exp(=20)"" P exp | —2 (@ —y") =~ - |

where €, = n. @, (x) = [4"(n))’m]~ ]”exp[— ¥/2)H,(x) is the L?*(R) normalized Hermite
(eigen)function, while H,(x) is the nth Hermite polynomial H,(x) = (—1)"(exp _1'2} % c:-;p[—xz}.

The normalization condition f k(v, x, Dexp[(y> — x7)/2]dy = | actually defines a transition
probability density of the Ornstein-Uhlenbeck process (see, e.g., Eq. (19))

p(y.0.x. 1) = p(y.x. 1) = k(y. x. ) p.2(x)/ p}*(v) (19)

with p«(x) =m ~ IEE:H[J[ —x).
A more familiar form of the Mehler kernel reads (note the presence of exp (#/2) factor)

exp(r/2) [ (x2 4+ y¥) cosht — zx},}

k(y.x.1) = .
0 X0 = G mmn2 &P 2 sinh7

(20)



Brownian motion in the interval (-1,1): semigroup picture

The orthonormal eigenbasis is composed of functions ¥y (r), n =1,2,...
such that ¥)(x) = 0 for |z| < a, where n labels positive eigenvalues E,, ~ n?.
More explicitly: ¢y(z) = cos(nmzx/2) for n even and sin(nwz/2) for n odd,
while the eigenvalues read E,, = (nw/2)?.

It is clear that any € L2([—1.1]), in the domain of the infinite well Hamil-
tonian, may be represented as ¢/(r) = E;'”:l cnn(z). Its time evolution fol-
lows the Schridinger semigroup pattern v/(x) — ¥(xz,t) = [exp(—Ht)](x) =
E::::I Cn eXp(—Ent) Un(x).

Let us consider H = —A — E; instead of H = —A proper (the boundary
data being implicit). Accordingly, the a priori positive-definite ground state
vi(z) = plﬁ{:ﬂ} corresponds to the zero eigenvalue of H — Ey. Thence,
the “renormalized” semigroup evolution reads @(z,t) = exp(+E1t) Y n

.- ,. 1/2 . .
exp(—Ent) Uy (x) = v(x) = p.' (). Here, in a self-explanatory notation,
we have defined the probability density function (pdf) |¢q(z)]? = p«(x)



The semigroup kernel exp(—tH )(x,y), associated with such H whose
lowest eigenvalue is (), defines a time homogeneous random process in the
interval. Its standard spectral representation is (the renormalization by —E
produces here an exponential factor), see also |9]

E(t,z,y) = exp(—Ht)(z,y)

e

= exp [_|_7|-Ef;‘,f'4) Z exp [ (nm/2) E] Un(z) Yn(y)

n=1

i ) t/4] sinfnm(z+1)/2] sin[nm(y+1)/2].

Here, ¥(z.t) = j" E(t,z,y)¥(y)dy. In probabilistic terms, the kernel al-
lows to define a conditional probability FPr(X;) = k(t, z, y)dy that a process
started at xr will reach a vicinity dy of ¥ in time £,

In the standard lore of the Brownian motion with killing (sometimes
identified with absorption), one adds that ¢ is prior to a killing time 7.
An inventory of typical calculable functions/ functionals related to the killed
Brownian motion (various forms of the transition density k, distribution
function and density of first exit time 7, mean first passage/exit time, etc.)



Schrodinger semigroup transcript of the Fokker-Plack dynamics.

The essence of the method (we consider the 1D case, in a dimensionless notation) lies in passing from the Fokker-
Planck equation

Oip=Ap—V (b-p), (4)

for the probability density function p(x.t), with the initial condition pg(x) = p(x,0) and suitable boundary data,
where the existence of the stationary (equilibrium) pdf p(x,t) — p.«(x) is presumed to be granted in the large time
asymptotic, to the Schrodinger-type equation 1.e. the semigroup exp(—Ht):

8V = —HU = AT — VT, (5)

for a real-valued function ¥(x.t). We tacitly presume the potential to be confining so that the positive definite ground

state U(x) = piﬁ () exists and corresponds to the 0 eigenvalue of H. This can be always achieved by subtracting the
lowest non-zero eigenvalue of H, if actually in existence, from the potential.
The auxiliary potential V, up to an additive constant, takes the form (actually obeys the compatibility condition,

given p.(r))

V() = p. P Apl>. (6)

The transformation between (4) and (5) is executed by means of a substitution (remember that p(x.t), as a probability
density function, integrates to 1)

pla.t) = W(z,t)p./ (x). (7)

Another expression for the Schrodinger potential reads V = b*/2 + Vb, where b = VIn p., thus completing the
mapping.

Ground state of H does matter ! Erratumxl/Z) factor is missing



Fokker-Planck dynamics in the interval. (Feller picture)

Under the very same infinite well conditions, after taking account of (5)-(7), another random process (devoid of
any killing notion) is defined by means of the regular transition probability density (here a multiplicative Doob’s
transformation is involved, [13]; = and y belong to an open interval D)

1/2
p' ()
p (9)

(t,z.y) = k(t.z.y)
Py ! p« ~(y)

so that a consistent propagation of the Fokker-Planck probability density function is secured: p(x.t) =
[plt,z,y) poly) dy entirely within the interval D C R. More details on these and related issues can be found in
113, 17] see also [5].

The Fokker-Planck equation (4), with a stationary solution p.(x), can be rewritten in the form of the general
transport equation

Oip = [Plﬂﬂ‘- (FII"’Z ) —pi ? (ﬂpifzﬂ p. (10)

with the (motion in the interval) boundary data being implicit.

Ground state of H matters !

Remark 1: This equation often happens to be explicitly written in terms of p.(r) = exp[—®(z)| where ® plays
the role of the Boltzmann-Gibbs potential. In Ref. [15] we have introduced a thermal redefinition of the equilibrinm
pdf (self-explanatory notation): p.(z) = (1/Z) exp|—V(x)/keT], see also [15].
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FIG. 1: Ground states pi*m for a sequence of deepening finite wells. Numbers refer to: 1 - cos(wz/2), while 2,3,4,5,6,7 enumerate

well depths Vi = 5, 20, 100, 500, 5000, 50000 respectively. Left panel shows an enlargement of the vicinity of maxima.

Finite well spectral problem vs infinite well, ground state and the inferred pdf

The ground state eigenvalues E' = E for various well depths have been obtained numerically and we reproduce them

up to four decimal digits:

Vo

[~

= o,
Vo = 20.

Vo = 500,
Vo = 1000,
Vo = 5000,
Vi = 50000,
Vo ~ oo,

Ey
Ey
Ey
EA
Ey
E;
E;

— 1.1475,
— 1.6395,
— 2.2605,
= 2.3184,
— 2.3989,
— 2.4296,
— 72/4 ~ 2.4674.

(14)



Visual options: F -P pdf dynamics
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FIG. 2: Fokker-Planck dynamics of p(x,t) in a finite well environment. It is started from the gaussian with cutoffs men-
tioned in the text. Numbers refer to: 1 - the gaussian (initial data), 2,3,4,5,6,7, depict the p(x,t) evolution at selected
respective time instants (number of algorithm iteration steps). Left panel: for Vo = 20 we have depicted time instants
4000, 8000, 15000, 25000, 40000, 60000, and the vicinity of an asymptotic (8) for 120000. Right panel: for ¥, = 1000 the evo-

lution proceeds somewhat faster and we have respectively 300,600, 1200, 3000, 5000, 10000 while 8 refers to 100000. The time
increment equals At = 107



Similar results for (more) general Lévy processes

Leévy stable case | , Non-locality is an issue!
+ Roughly:
Af(x) = —uf(x) forxeD

Apf = —pf == {f[x):{] for x & D

Symmetric a-stable processes, V(&) = |£|*

e There are 0 < 1 < uy < u3 — o0 and f, such that
A-1,1)fn = —Hnfn

nm
. Lin ~ [T]a (Blumenthal, Getoor)

® %{:H_ETE)U < [ < (nz_n}a {Chen, Song)

Theorem

Hn = (7)) = Fg +0(3)

Set a =1, compare this with the Brownian result (nz—ﬂ)2 . The Cauchy generator |V| = (—A)"/?

is not quite a square root of the negative Laplacian. What about eigenfunctions ? How
does |v| =(—A)/2 actonits D =[-1,1] restricted domain ?



Finite Cauchy well: semigroup vs Feller dynamics (Robin boundary conditions ?)

Infinite well (or infinite barrier) models make sense if they
are capable of giving approximate answers to questions con-
cerning finite wells. It is important that the validity of the
approximation be controlled, which requires the notion of
continuity when passing from the finite well to the infinite

We consider the Cauchy- Schrtidiﬁger &.emiﬁ*oﬁp dynamics exp[ —-H t) where H =T+ V — Ey and —T stands for the
Canchy generator, e.g. T = |V| = (~A)"2, while V denotes the finite well potential defined in Section ILD and E

1s the bottom (ground state) eigenvalue of H. Here

T9(r) = (~8) () = - [LEZLEL,,

The semigroup evolution gives rise to the transport equation for p(z, t) = U(z, t)p *(z), which is a straightforward
generalization of Eq. (10) mentioned in Remark 2, see for more details [12, 15, 21]:

0yp = _[ 1,sz (P;lﬁ) —1;2 (Tpl,m)] (16)

where pi’f % is the L*(R) normalized ground state of H =T + V — F;, associated with the eigenvalue (.



Cauchy driver in the well: pdf dynamics towards a stationary one
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FIG. 4: Cauchy evolution of p(z,t) in the finite well environment. Left panel V3 = 20: numbers refer to: 1 - initial gaussian
pdf, 2.3,4.5.6,7, algorithmic time instants after 10,50, 100, 200, 400, 600 steps, 8 - a close vicinity of an asymptotic pdf is
approached after 2500 steps. Right panel V = 500: 1 - initial gaussian pdf, 2,3, 4, 5,6, 7, refer yo 2,4, 6, 100, 200, 600 algorithm
steps respectively, 8 - a vicinity of an asymptotic pdf after 2000 steps. Time inerement At = 10~ is 100 times larger than that
adopted for Brownian simulations.

Cauchy driver: finite well vs infinite well



Cauchy finite well eigenvalue problem: L-’.;J_-']:{gfh Iﬂt%
trigonometric connections 7 Not quite ...

How distant/close are we from/ to the infinite well spectrum and eigenfunctions
(e.g. ground state), while going from the finite well depth 5 up to 500, or 5000 ?
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FIG. T: Cround state solution of the Cauchy well. Numbers refer to: 1 - cos{mz/2), 2 - an approximate solution, Eq. {13) in
[16], 3,4,5,6 refer to the well depths, respectively 5, 20, 100, 500. Convergence symptoms (towards an infinite well solution) are
visually identifiable. Left panel reproduces an enlarged resolution around the maximum of the ground state, The right panel
does the same job in the vicinity of the right boundary +1 of the well (curves deformation eomes from seales used to increase
a resolution).



Technical info: an approximate formula for all infinite Cauchy well
eigenfunctions , according to Kwasnicki (J. Funct. Anal. 2012), Ref. (16)
mentioned in previous figures)

For completeness of arguments, let ns give an explicit expression for

approximate eigenfuctions associated with the infinite Caunchy well Namely,
we have (with minor adjustments of the original notation of Ref. [11])

Un(T) = g(—x)Fo(l +x) — (—-1)"gq(z)Fa(1—x), zeR,  (19)

where E_ 551 — % and g{z) is an auxiliary function

F 0 for = e [—m,—%}:
. '5"_1‘-1‘-:r forze (1.0,
—g(r—yg)" forxe(Dg),
|1 for = e [ﬁ_-:_]

The function F,(z) is defined as follows: F (r) = sin [P r+ g) —G(E, ),
where () is the Laplace transform &(z) _|",:, e~ " y(s)ds of a positive
definite function y(s)

1 1
v s) 5 XD ——‘[ = logi 1 4 I‘.E“_:Id'i'“\] . (21)

)




Infinite Cauchy well: ground state function problem.

Shape issue !
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FIG. 8: Convergence towards v, 2 - an approximate ground state, Eq. (13) in [16): Our algorithm appears to be more reliable,
since 6 and 7 refer to wells whose depths are respectively 500 and 5000, Left panel shows an enlarged vicinity of the maxima.
Right panel shows enlarged plots in the vieinity of +1.



Analytic guess — insightful ground state approximation

Since it is the ground state that matters in our discussion of the inferred pdf p(z,t) dynamics, let us introduce
another analytic approximation of the "true” ground state m the Cauchy case. Namely, while skipping a number of
detailed hints that motivate our choice, we propose the following function as the pertinent approximation

v(z)
where
s ML
06"

and C' = 0.921749 1s a normalization constant,
predicted by means of scaling arguments in [2],

the cosine once away from the boundaries of [-1.

= C\/(1 - 22) cos(az), (22)
T T W T T T

R’ @1 9%E R1D - : 23
8) 64 256 512 1024 4096 (23)

We note that the houndary hehavior of our 1 conforms with that
e.g. drops down to 0 as (1 —|z])/%. Clearly, 1 becomes close to
1]. The function is concave and conforms with earlier mathematical

results on the the ground state shape for stable generators in the interval, [25, 26].

Note: Shape approximation accuracy

is not strictly correlated with that for the

corresponding (approximate) eigenvalue. Here, we have deduced E~1.5550
while something like E~1.5777 is expected , by independent reliable reasonings .



Note that the curve
5 is out of the frame !
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FIG. 1. Approximate ground states for Cauchy wells. Numbers refer to; 1- infinite well ¥(z) of Eq.(11); 2, 3, 4 - finite wells
with depths Vi = 5000, 10000, 20000 respectively, (15; 5 - infinite well proposal of (2. In the right panel, the carve 5 s out of
the frame.

Curve 5 refers to Kwasnicki approximation, curve 1 to ours



Problem: the trial function appears to be in the domain of H, but are we
really close to the true eigenfunction ?

|_‘*f:.|IIE f=FE fwhere E € R* isan eigenvalue and f € L*(D)

Here AlG®  is the restriction of  |A[Y*to D and D=(-1,1)

AIL/2 (. f(z) f{J +2) flz) = f(2)
A7 f (=) [ dz /R m—op U» ZTER

Alp? —> Ap

Let us tentatively consider the action of |A|/2 on C5°(R) functions v(z), supported in D = (—1,1). .
for all x € (—1,1) we have:

'l a2
ml—=x T 1w 1

Let us change the integration variable y = t — z in Eq. (6). We have:
2 Y(z) |1 /‘ ¥(z) — ¥(t)
= 5+ — dt
1 (t—z)?
S~

Tl —1x° T
Regional fractional Laplacian




Numerically assisted check of deviations from the true eigenvalue formula
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FIG. 2: Left panel: a comparison of ¥(z) = C'\/(1 — 22)cos(az) (dotted line) and Api (solid line). Middle panel: |Api(x) —
Ev(zx)| with E = 1.156. Right panel: supremum of |[Ap ¢ — E¢(z)|(a) for E = 1.156. The a-axis is scaled in units 7/4096.



POLYNOMIAL EXPANSIONS OF EIGENFUNCTIONS IN THE INFINITE CAUCHY WELL:
PUSHING AHEAD APPROXIMATION FINESSE.

Then ground state function is even, hence we can expect its power series expansion in the form:
o0
Y(r)=Cv1—22 E on 2", apg = 1.
n=I(

where our major task is to deduce the expansion coefficients ay,.

By definition we know that :ELH}' solution ¥(z) is defined in the domain D = [—1, 1] and obeys
¥(x1) = 0. We extend this restriction to Apv(z) and demand

lim Apy(z) =0.

r—+1

consider an approximation of 1)(z) by series terminating at the polynomial of degree 2n.

indicated by wa,(x)

Effectively, we pass to:

= CV1 — 27ws, (x). with 2n = 2.4, 6,10, 20, 30, 50, 70, 100, 150, 200, 500

Note: polynomials w of degree 2n are not truncated ,square root of the cosine” series !



Properties of approximating polynomials

0.50 055 060 065 070
W4(x)

FIG. 6: Left panel: a comparative display of polynomials wa,, (x) of degrees 2,4, 6, 10, 20, 30, 50, 70, 100, 150, 200, 500 and t
curve \/cos (14437x /4096) (gold) which has been a building block in the formula (11). Middle panel provides an enlargeme
in the vicinity of the right boundary. Right panel depicts various approximations of the ground state function at the rig
boundary = = 1: 1 - curve Cwsgo(z)v1 — 22, 2 - curve of [8], 3 - ¥1(x) ~ (1 — |z])*/? of [2], 4 - Vi = 500 finite well grow
state of [15].

Note a clearly visible deviation from the ,square root of the cosine”



Consecutive polynomial approximations of the ground state (we have analogous
data for lowest excited states)

0.12

0.08
0.02 0.03

0.04

|Apw(Xx)—Ey(x)]
|Apy(X)—Ey(x)]

1
- ___,.—»""

0.00
0.00

=
w
o
=
w
w
—
o
o

FIG. 7: Left panel: |Apu(zx) — Ev(x)| where ¥ = Cv/1 — 2%ws,,(x), with 2n = 2,4, 6, 10, 20, 30, 50, 70, 100, 150, 200, 500. Right
panel: polynomial degrees 2n = 50, 70, 100, 150, 200, 500, v(x) in the vicinity of the right boundary = = 1.

|Api(z) — Ev(z)| where v = C1 — 2%wa,(x)
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Various approximation outcomes: 1. Polynomial approximation of order 200
(instead of the square root of the cosine), 2. Kwasnicki curve, 3. Curve with a
square root of the cosine, 4. Finite well of depth 500.

Technical note: the eigenvalue in the polynomial approximation of order 100 stopnia reads
1.1578371196122386, for order 150 we get 1.1578021297616428 (difference of the two
equals 0.000035), for order 200 we get 1.1577898083169296 (the difference between
cases 200and 150 equals 0,0000123).

Kwasnicki (2012), by means of an independent method : 1.1577738836



Cauchy operator in the interval: Technical subtleties (e.g. hypersingular integrals)

| 1 | l—x d: oo d 1—x L" x4 _%{I T
A2 = —— [—w(m) (/ fj+/ —3’) +/ al y).;. ( )dy] =
T —00 Y 1—-z Y —1—=x Y

_ 2 4) 1 /H” bety) —vl@)

ml— I'E —1—= yz

iy

Given z € (—1,1), let us make a substitution x +y = f in (4), presuming that now the Cauchy principal value needs
to be evaluated relative to z. We obtain (note the principal value (p.v.) symbol, introduced in the self-explanatory

notation)
2 (x) L yp(z) — () 2 (z) 1 () ! Loap(t)dt
A2y _/ wla) — o) gy 2 L) |- _/ _
1A 7r1—332+7r 1 (t—1x)2 7r1—;r-2+7r(pt) t—x|_, J_i (t—x)?
Iy( T—€ (¢ : 1
_ 1 i 21 (x) _f W(t)dt _/ () )] t)dt (5)
T e—0 € 1 (t—z)? I+E(t—:t, 1{#—:1,
where (H) refers to the Hadamard regularization of hypersingular integrals (Hadamard finite part, extensively em-

ploved in the engineering literature, [9]-[18]). We point out that the troublesome term ?r;’—()g has been cancelled away

by its negative coming from the evaluation of (p.v.)[...] in the above.

1 Loab(t)d 1 d Lap(t)dt
A =00 [ O = ey [ 20D =——P’*~‘1/ =

t—z)2  wde , t—x

- 1 v'(t)
The eigenvalue problem reads E(x) + - (p.v.) /1 1=

t—x



cos(mx/2) is not an eigenfunction of |&|}_]f2

Y, T 1 YeosTdt 1 me [ .7m(l1+2) (1 —x) 1 . mz [, . 71— (14 )
|A|A EDS?:—;(H) /—Lm =5 c08 SIT -I—SIT + 5 sin - CIT—CIT
T sint 1 > sint . ™ cost T eost — 1
Si{f) = —dt = — — —dt CI(T} = — — dit=C+Inr+ R -
. D f 'ﬂ- o t oo t . D t

| 1 | 1 | 1
-1 0.5 0 0.5 1

X

|
[

FIG. 1. The result (9) for |;}‘|i;2 cos(mx/2) (full line) clearly is not E cos(mz/2), E > 0 (dashed line). For demonstration

mT

purposes we have chosen F = 1.307 which is equal to the maximum of the function |&|};2 cos 7



sin(mz) is not an (excited) eigenfunction of |.f_‘“a|}jE

|.&|'B’2 sin(mz) = —%(’H) /_1 —;dt = sin(mz) (Si[ﬂ(l — )] + Si[m(1 —|—:c)]) — cos(mz) (Cj[—,rr{l — )] —Ci[r(1+ :r.)])

sin
(t—x

lad

Hv.:-

FIG. 2. The result (9) for |A|}/*sin(wz) (full line) is not E’ sin(wx), E' > 0 (dashed line). For demonstration purposes we
have chosen E’ = 2.0838 which is equal to the maximum of |A|}/? sin(7z).



(Non-exhaustive) summary of points that need non-amateur math.

- Path-wise description of a jump-type process with Killing;
how dothey set down at the stationary (ground) state ?

- Acomplementary path-wise desrcription of the process which
equilibrates to the ,ground state , pdf (trapping in a finite well I)

- Maximal number of bound states in finite wells, from 1D to 3D

- More refined (as much analytic as possible) analysis of shapes
of eigenfunctions. More accurate eigenvalue estimates.

- More refined analysis of nonlocality impact upon the computation of
eigenvalues

- Spectral problems in 3D (partial results only for Cauchy and quasi oscillators)

Metaphysical question: Our departure point have been the jump-type processes,
hence it is justified to ask what is actually jumping here. There is no , obvious”
particle interpretation so much prefreered by physicists.



.Rough” conceptual guide: 1D Cauchy semigroup

J. Math. Phys. 40, 1057, (19949)
a,0,=—|V|e,—ve,,  a,6=|V|6+V0, (21)

where F 1s a measurable function such that:

(a) forallxeR, Fix)=0,
(h)  for each compact set KC R there exists Cp such that for all xe K, F is locally boundad
V(x)=Cg.

Lemma 5: If 1= r=p=m and t>0, then the operators 7] defined by

SRS :m's”

are bounded from L"(R) into L?(R). Moreover, for each re[l,2] and feL"(R), T:f IS a
bounded and continuous function.

ET:}’ HI)=Ef[ﬂXf]exp

Lemma 7: For any pe[1,2] anéllfu; L?(R) there holds

(T f ) x)= L;{': (2. ) (v )dy. where k] (¥,y) =0 almost everywhere



Lemma 8: k| (x,y) is jointly continuous in (x,y).
Lemma 9: k.,r{_r,y_l 15 strictly positive.
let pyix] and py(x) be strictly

positive densities. Then, the Markov process X, characterized by the transition probability den-
sity:

A x.i)

Fia, — ¥
Pry.s.x,1)=k_g(x,y) Ay)

(23)
and the density of distributions

plx I =B (X, )8 x,1],

where

Oy(x,1)= Jﬂkﬂ-‘r_-_v,lﬂ yidy, B (pit)= [.Hk-if_;t.‘r,y}g{x}dx

1s precisely that interpolating Markov process to which Theorem 1 extends its validity, when the
perturbed semigroup kernel replaces the Cauchy kernel.

Clearly, for all 0==s=¢=T we have

H*[I?I:I=J k,"'_,{r,v) Be(v.5)dy, Blyv,5)= J ﬁ:fr_l.[r,u}ﬂlir,r]:fr (24)
I ; ) ) f" ;

Association: set 4, = ¥, § = f},],’?, so getting ||f}|:J.', f) = [:ﬂﬂ_]li_r:_,.nﬂ} — ‘-I‘Ii_r:,f.)pyg{;r:] and
W = —HWY with H = |V| + V
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