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TERMINOLOGY

QUANTUM −→ (statistical) mechanics ←− CLASSICAL

state (of the system)

statistics

Cramér-Rao inequalities

Fisher information/state estimation

information theory
entropy

information and entropy

QUANTUM −→ entropy and uncertainty ←− CLASSICAL

OBJECTS OF INTEREST∑N
j=1 µj = 1 → Shannon entropy: S(µ) = −

∑N
j=1 µj lnµj

∫
ρ(x) dx = 1 → differential entropy: S(ρ) = −

∫
ρ(x) ln ρ(x)dx

PROBLEM ADDRESSED

dynamics of densities → dynamics of differential entropy

ρ(x)→ ρ(x, t) =⇒ S(ρ)→ S(ρ)(t)



SHANNON ENTROPY −→ DIFFERENTIAL ENTROPY

Long message (n ”entries”); an ”alphabet” (N << n ”letters”);

µj, 1 ≤ j ≤ N - probability of the j − th ”letter” , µ = (µ1, ..., µN)∑N
1 µj = 1→

∫
ρdx = 1

? ⇓ ?

S(µ) = −
∑N

1 µj lnµj −→ S(ρ) = −
∫
ρ(s) ln ρ(s)ds

Pedestrian argument (see e.g. standard coarse-graining methods):

- Take an interval of length L on a line and the partition unit ∆s = L/N

- Define µj
.
= pj∆s⇒:

S(µ) = −
∑

j(∆s)pj ln pj − ln(∆s)

- Fix L and allow N to grow, so that ∆s decreases

0 ≤ S(µ) = −
∑

j(∆s)pj ln pj − lnL+ lnN ≤ lnN

⇓

ln(∆s) ≤ −
∑

j(∆s)pj ln pj ≤ lnL
⇓

(S(ρ) = −
∫
ρ(s) ln ρ(s)ds

In the infinite volume L→∞ and infinitesimal grating ∆s→ 0 limits,
the differential entropy may be unbounded both from below and above.
Bad news ? Not quite...

Note: properly executed coarse-graining implies:

S(ρ)− ln ∆s ≤ S(µ) and S(µ)− S(µ′) ∼ S(ρ)− S(ρ′)



DIFFERENTIAL ENTROPY (pedestrian approach plus com-
ments).

- Gaussian density

ρ(x) = 1
[2πσ2]1/2

exp
[
− (x−x0)

2

2σ2

]
⇓

S(ρ) = 1
2 ln(2πeσ2)

- Harmonic oscillator in quantum mechanics

ρ(x, t) =
(
2πD
ω

)−1/2
exp

[
− ω

2D (x− q(t))2
]

dS/dt = 0

- Free quantum dynamics for a Gaussian wave-packet

ρ(x, t) =
α

[π(α4 + 4D2t2)]1/2
exp

(
− x2α2

α4 + 4D2t2

)
. (1)

S(t) =
1

2
ln
[
eπ

⟨
X2

⟩
(t)

]
⟨
X2

⟩ .
=

∫
x2ρdx = (α4 + 4D2t2)/2α2

- Squeezed state of the oscillator (atomic units)

σ2 → σ2(t) =
1

2

(
1

s2
sin2 t+ s2 cos2 t

)
- Non-quantum example: free Brownian motion; D = kBT/mβ

σ2 → σ2(t) = 2Dt



Comment (i):
For general continuous probability distributions ρ(x) with an arbitrary
finite mean value, whose variance is fixed at σ2 we have

S(ρ) ≤ 1
2 ln(2πeσ2)

S(ρ) becomes maximized if and only if ρ is a Gaussian.

Comment (ii):
We address a general time-dependent setting, before exemplified by
admitting σ = σ(t),

Comment (iii):
Recall the Fourier transform for normalized Schrödinger wave functions,
together with the notions of position and momentum representation
wave packets.
Given any, real (!) or complex function in ψ(x) ∈ L2(R). Let (Fψ)(p) be
its Fourier transform. The corresponding probability densities follow:

ρ(x) = |ψ(x)|2 and ρ̃(p) = |(Fψ)(p)|2.

Denote:

Sq = −
∫
ρ(x) ln ρ(x)dx and Sp = −

∫
ρ̃(p) ln ρ̃(p)dp

There holds the entropic uncertainty relation (Bia lynicki-Birula/Mycielski)
between two forms (position and momentum respectively) of the informa-
tion entropy:

Sq + Sp ≥ (1 + ln π)

Note:
In view of

∫
ρ(x)dx = 1, any continuous probability density can be rewrit-

ten as ρ
.
= (
√
ρ)2, i.e. in terms of L2(R) functions. The previous argument,

of seemingly pure quantum provenance, undoubtedly works for ψ
.
=
√
ρ,

hence in non-quantum settings as well.



MEASURES OF LOCALIZATION, MORE ENTROPIC INEQUALITIES

For an ρ with finite mean and variance fixed at σ2, we have:

S(ρ) ≤ 1
2 ln (2πeσ2)

⇓

1√
2πe

exp[S(ρ)] ≤ σ

We consider ρα
.
= ρ(x−α) and fix at σ2 the value ⟨(x−α)2⟩ = ⟨x2⟩−α2

of the variance. Let us define the Fisher information (localization measure)
of ρα:

Fα
.
=

∫
1
ρα

(
∂ρα
∂α

)2

dx ≥ 1
σ2

INEQUALITIES OF VARIOUS SORTS FOLLOW

1
σ2 ≤ (2πe) exp[−2S(ρ)] ≤ Fα

Under an additional decomposition/factorization ansatz (of the quan-
tum mechanical L2(Rn) provenance) that ρ(x)

.
= |ψ|2(x), where a real or

complex function ψ =
√
ρ exp(iϕ) is a normalized element of L2(R),we

have:

Fα = 4
∫ (

∂
√
ρ

∂x

)2

dx ≤ 16π2σ̃2

1
σ2 ≤ Fα ≤ 16π2σ̃2

1
4πσ̃ ≤

1√
2πe

exp[S(ρ)] ≤ σ

Outcome: the differential entropy S(ρ) typically may be expected to
be a well behaved quantity: with finite both lower and upper bounds.



DYNAMICS OF INFORMATION → DYNAMICS OF LOCALIZATION

Smoluchowski diffusion process

We consider time-dependent probability densities ρ
.
= ρ(x, t), whose

evolution is governed by the Fokker-Planck equation:

∂tρ = D△ρ−∇ · (ρb)

with the drift b = b(x) = (1/mβ)F , F = −∇V , D = kBT/mβ. Set:

u(x, t) = D∇ ln ρ(x, t) and v(x, t) = b(x, t)− u(x, t)

⇓
∂tρ = −∇(vρ)

Now the differential entropy, typically is not a conserved quantity.

S(t) = −
∫
ρ(x, t) ln ρ(x, t) dx

⇓
(with boundary restrictions that ρ, vρ, bρ vanish at spatial infinities or fi-
nite interval borders)

dS
dt

=

∫
[ρ (∇ · b) +D · (∇ ρ)2

ρ
] dx

Remembering that v = b+ u and u = D∇ ln ρ, we have:

dS
dt

=

∫
[ρ (∇ · b) +D · (∇ ρ)2

ρ
] dx

⇕
DṠ .

= D ⟨∇ · b⟩+
⟨
u2
⟩

= −⟨v · u⟩
⇕

DṠ =
⟨
v2
⟩
− ⟨b · v⟩



DṠ =
⟨
v2
⟩
− ⟨b · v⟩

⇓

”Thermodynamic” formalism

dS
dt

=
dSprod
dt

− dQ
dt

where:

dSprod
dt

.
=

1

D

⟨
v2
⟩
≥ 0

while

dQ
dt

.
=

1

D

∫
1

mβ
F · j dx =

1

D
⟨b · v⟩

Note:

kBT Q̇ =

∫
F · j dx

V = V (x) does not depend on time, define:

j = ρDFth

with:

kBTFth = F − kBT∇ ln ρ
.
= −∇Ψ

Consider:
Ψ = V + kBT ln ρ

⇓
⟨Ψ⟩ = ⟨V ⟩ − T S ′

where S ′ .= kBS.



Minor surprise: ⟨Ψ⟩ = ⟨V ⟩ − T S ′

(1) < Ψ > stands for theHelmholtz free energy
(2) < V > stands for the (mean) internal energy

⇓
(ρV v needs to vanish at the integration volume boundaries).

d

dt
⟨Ψ⟩ = −kBT

∫
Fth · j dx = −(mβ)

⟨
v2
⟩

= −kBT
dSprod
dt

≤ 0

The ”Helmholtz free energy” either remains constant or decreases as a
function of time towards its minimum (which equals −∞ when there is no
external forces)

Note: Of particular interest is the case of constant differential entropy
Ṡ = 0 which amounts to the existence of steady states. In the simplest case,
when the diffusion current vanishes, we encounter the primitive realization
of the state of equilibrium with an invariant density ρ. Then, b = u =
D∇ ln ρ and we readily arrive at the classic equilibrium identity for the
Smoluchowski process:

−(1/kBT )∇V = ∇ ln ρ (2)

which determines the functional form of the invariant density:

ρ = 1
Z exp[−V/kBT ]

Ψ = V + kBT ln ρ

⇓

Ψ = −kBT lnZ



MORE ABOUT LOCALIZATION DYNAMICS

In the absence of external forces, the de Bruijn identity tells us that:

dS
dt

=
1

D
· F .

= D ·
∫

(∇ρ)2

ρ
dx > 0

Define:

Q = 2D2∆ρ1/2

ρ1/2
=

1

2
u2 +D∇ · u

F .
= ⟨u2⟩ = −2⟨Q⟩ > 0

Variational arguments (with respect to ρ and s(x, t) such that v = ∇s)
yield:

L = −
∫
ρ
[
∂ts+ 1

2(∇s)2 −
(
u2

2 + Ω
)]
dx

H .
=

∫
ρ ·

[
1
2(∇s)2 −

(
u2

2 + Ω
)]

dx

⇓

∂ts+ 1
2(∇s)2 − (Ω−Q) = 0

(plus the continuity equation) where:

Ω = 1
2

(
F
mβ

)2

+D∇ ·
(

F
mβ

)
We have:

H = (1/2)(
⟨
v2
⟩
−

⟨
u2
⟩
)− ⟨Ω⟩ = −⟨∂ts⟩

But:

Ψ̇ = kBT
ρ ∇(vρ)→ ⟨Ψ̇⟩ = 0

in view of vρ = 0 at the integration volume boundaries. Since v =
−(1/mβ)∇Ψ, we define

s(x, t)
.
= (1/mβ)Ψ(x, t) =⇒ ⟨∂ts⟩ = 0

so that H ≡ 0 identically.



H ≡ 0

⇓(
dS
dt

)
prod

= 2
D

∫
ρ
(−→u 2

2 + Ω
)
dx = 1

D⟨v
2⟩ = Ḣc(t) ≥ 0

Recall:

F = ⟨v2⟩ − 2⟨Ω⟩ ≥ 0

and exploit:

∂t(ρv
2) = −∇ · [(ρv3)]− 2ρv · ∇(Q− Ω)

We get:

1
2
d
dt⟨v

2⟩ = −⟨v∇(Q− Ω)⟩

and

d
dtF = d

dt [⟨v
2⟩+ 2⟨Ω⟩] = −2⟨v · ∇Q⟩

which is the general equation for the localization/uncertainty dy-
namics in the course of the Smoluchowski process.

Notice:

If together with ρ(t) → ρ∗ we have Ḣc(t) → 0 as t → ∞, this implies
F → −2⟨Ω⟩∗.

Reminders:

(*) DṠ =
⟨
v2
⟩
− ⟨b · v⟩

(**) 1
σ2 ≤ (2πe) exp[−2S(ρ)] ≤ 1

D2F

Reference: P. G., ”Differential entropy and dynamics of uncertainty”,
quant-ph/0408192; see also Acta Phys. Pol. B 36, (2005), 1561-1577 and
Phys. Lett. A 341, (2005), 33-38.


