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Modular nonlinear Schrödinger equation

i~∂tψ =

[
− ~2

2m
∆ + V

]
ψ +

[
κ

~2

2m

∆|ψ|
|ψ|

]
ψ ,

ψ(x, t) complex, |ψ| .= (ψ∗ψ)1/2, V (x) real, κ ≥ 0.

(The standard NLS interaction entry would read [κ|ψ|2])

If κ > 0, the pertinent nonlinear dynamics preserves the L2(Rn)
norm of any initially given ψ, but not the Hilbert space scalar prod-
uct (ψ, φ) of two different, initially given ψ and φ. The dynamics
is non-unitary in L2(Rn); unitarity is restored if κ = 0.

For all κ ≥ 0

∂tρ = −∇ · j
where ρ = ψ∗ψ and

j = (~/2mi)(ψ∗∇ψ − ψ∇ψ∗)

. We consider normalized solutions only, which sets a standard
form of j

.
= ρ · v , where

v = (~/2mi)[(∇ψ/ψ)− (∇ψ∗/ψ∗)] .= (1/m)∇s

is regarded as a gradient velocity field and ρ(x, t) = |ψ|2(x, t) is a
probability density on Rn.



Lagrangian formalism

- stationary action principle δI [ψ, ψ∗] = 0

- functional of ψ-functions, their space and time derivatives,
including complex conjugates:

I [ψ, ψ∗] =

∫ t2

t1

L(t)dt

where L(t) =
∫
L(x, t) dx, (we leave unspecified, possibly infinite,

integration volume).

Pedestrian functional calculus

δL/δψ ≡ ∂L/∂ψ −
∑
i

∇i[∂L/∂(∇iψ)]

One ends up with the Euler-Lagrange equations:

∂t[∂L/∂(∂tψ
∗)] = δL/δψ∗

∂t[∂L/∂(∂tψ)] = δL/δψ
If we properly specify the Lagrangian density L .

= Lκ:

Lκ(x, t) =
i~
2

[ψ∗(∂tψ)− ψ(∂tψ
∗)]− ~2

2m
∇ψ · ∇ψ∗ − V (x)ψ ψ∗+

κ
~2

8m

[
∇ψ∗

ψ∗
+
∇ψ
ψ

]2

ψ ψ∗ .

the stationary action principle yields a pair of adjoint modular
equations which comprise the previous one in conjunction with its
complex conjugate:

−i~∂tψ∗ =

[
− ~2

2m
∆ + V

]
ψ∗ +

[
κ

~2

2m

∆|ψ|
|ψ|

]
ψ∗ .



The gradient assumption

v = v(x, t) = (1/m)∇s

plus the familiar Madelung substitution:

ψ = |ψ| exp(is/~)

where |ψ|2 = ρ. yield the Lagrangian density

Lκ(x, t) = −ρ
[
∂ts +

m

2
(u2 + v2) + V (x) − κ

m

2
u2

]
with

u(x, t)
.
= (~/2m)∇ρ/ρ

Here, δI [ρ, s] = 0 gives rise to

∂tρ = −∇(ρ · v)

∂ts +
1

2m
(∇s)2 + V + (1− κ)Q = 0 ,

where, in view of |ψ| = ρ1/2,

Q = Q(x, t)
.
= − ~2

2m

∆ρ1/2

ρ1/2
= − ~2

4m

[
∆ρ

ρ
− 1

2

(
∇ρ
ρ

)2
]
.

The modular Schrödinger equation takes the form:

i~∂tψ = [−(~2/2m)∆ + V ]ψ − κQψ .



Hamiltonian formalism

A symplectic structure; given ψ, ψ∗ and

πψ = ∂L/∂(∂tψ) = (i~/2)ψ∗

πψ∗ = ∂L/∂(∂tψ
∗) = −(i~/2)ψ

The subsequent Legendre-type transformation defines the Hamil-
tonian density:

Hκ = πψ · ∂tψ + πψ∗ · ∂tψ∗ − Lκ =

~2

2m
∇ψ · ∇ψ∗ +

[
V − κ

~2

8m

(
∇ψ∗

ψ∗
+
∇ψ
ψ

)2
]
ψ ψ∗ =

ρ
[m

2
v2 + V + (1− κ)

m

2
u2

]
= πs∂ts− Lκ

where, this time with respect to the polar fields ρ(x, t) and
s(x, t), we have:

πρ = ∂L/∂(∂tρ) = 0

πs = ∂L/∂(∂ts) = −ρ

Hκ(t) =

∫
Hκ(x, t) dx

L(t) = −〈∂ts〉 −Hκ(t) ,

where, in view of
∫
ρ dx = 1, we set 〈∂ts〉 =

∫
ρ ∂ts dx.

A proper behavior of ρ=⇒〈Q〉 .=
∫
Qρdx = +(m/2)〈u2〉 > 0.

On dynamically admitted fields ρ(x, t) and s(x, t), we have

L(t) ≡ 0 ⇔ 〈∂ts〉 = −Hκ



Poisson bracket of A =
∫
A(x, t) dx and B =

∫
B(x, t) dx.

{A, B} = − i
~

∫
dx

(
δA

δψ

δB

δψ∗
− δA

δψ∗
δB

δψ
.

)
Identify A ≡ ψ(x, t) and B ≡ Hκ(t) −→

∂tψ = {ψ, Hκ}
Set A ≡ ψ∗

∂tψ
∗ = {ψ∗, Hκ} .

We recall e. g. that π̇ψ = −δHκ/δψ while ψ̇ = δHκ/δψ.

The time dependence ofHκ(t) is realized only through the canon-
ical fields, the Hamiltonian surely is a constant of motion. Thence
〈∂ts〉 as well.

The polar decomposition

ψ = ρ1/2 exp(is/~) , ψ∗ = ρ1/2 exp(−is/~)

preserves a symplectic structure.

{A,B} .
= {A,B}ψ,ψ∗ = {A,B}ρ,s

and thence:

∂tρ = {ρ,Hκ} =
δHκ

δs
= − 1

m
∇ (ρ∇s)

∂ts = {s,Hκ} = −δHκ

δρ
= − 1

2m
(∇s)2 − V − (1− κ)Q .

The result is valid for all κ ≥ 0. Note that generically

G = G(ρ, s) → dG

dt
= {G,Hκ} .



Reduction to effective κ = 0, 1 and 2 self-coupling regimes

(i) 0 ≤ κ < 1; if ψ(x, t) = |ψ| exp(is/~) actually is a solution
of modular NLS, then ψ′(x′, t′) = |ψ′| exp(is′/~) with

x′ = x , t′ = (1− κ)1/2t

|ψ′|(x′, t′) = |ψ|(x, (1− κ)−1/2t′)

s′(x′, t′) = (1− κ)1/2s(x, t)

automatically solves the linear Schrödinger equation:

i~∂t′ψ′ =

[
− ~2

2m
∆ +

1

1− κ
V

]
ψ′ .

(ii) For the borderline value κ = 1 we encounter the formalism
that derives from the wave picture of classical Newtonian mechan-
ics.

Note that (ii) is not a naive κ→ 1 limit of (i).

(iii) In case of κ > 1, replace (1− κ)1/2 by (κ− 1)1/2.
Outcome: ψ′(x′, t′) = |ψ′| exp(is′/~) is a solution of the nonlinear
Schrödinger equation

i~∂′tψ′ =

[
− ~2

2m
∆ +

V

κ− 1

]
ψ′ + 2

[
~2

2m

∆|ψ′|
|ψ′|

]
ψ′

Note that (ii) is not a naive κ→ 1 limit of (iii).



For clarity, consider κ = 2. If a complex function

ψ(x, t) = |ψ| exp(is/~)

is a solution of the modular NLS with κ = 2, then the real
function

θ∗(x, t) = |ψ| exp(−s/~)

is a solution of the generalized (forward) heat equation

~∂tθ∗ =

[
~2

2m
∆ + V

]
θ∗

Another real function θ(x, t) = |ψ| exp(+s/~) is a solution of
the time-adjoint (backwards) version of that equation:

−~∂tθ =

[
~2

2m
∆ + V

]
θ .

Note that the ill-posed Cauchy problem would possibly become
a serious obstacle. That because of the backwards parabolic equa-
tion.

Invoke the theory of strongly continuous dynamical semigroups.
Choose V (x) to be a continuous function that is bounded from
above, so that V ′ = −V becomes bounded from below. Then the
contractive strongly continuous semigroup operator exp(−Ĥt/~)
is well defined

~∂tθ∗ = −Ĥθ∗ =

[
~2

2m
∆− V ′

]
θ∗ .

together with its time adjoint

~∂tθ = Ĥθ =

[
− ~2

2m
∆ + V ′

]
θ



Dual Hamiltonians

Consider a product F(x, t)
.
= −ρ(x, t) s(x, t) of conjugate fields

s and πs = −ρ. The time evolution of

F (t) =

∫
dxF(x, t)

.
= −〈s〉

looks quite interesting:

dF

dt
= {F, Hκ} = −

∫
dx

[
s(x, t)

δHκ

δs
− ρ(x, t)

δHκ

δρ

]
=

−
∫
dx ρ

[m
2
v2 − V − (1− κ)

m

2
u2

]
.

A new Hamiltonian-type functional has emerged on the right-
hand-side of the above dynamical identity. We denote

H±
κ =

∫
dx ρ

[m
2
v2 ± V ± (1− κ)

m

2
u2

]
.

Note that negative sign has been generated both with respect to
terms (m/2)〈u2〉 and 〈V 〉.

The Hamiltonian motion rule rewrites as

dF

dt
= {F,H+

κ } = −H−
κ (t) ,

where H+
κ ≡ H plays the role of the time evolution generator.

H+
κ is a constant of motion, while H−

κ (t) is not.

A complementary relationship is generated by the induced Hamil-
tonian H−

κ :
dF

dt
= {F,H−

κ } = −H+
κ (t) .

Presently, H+
κ is a constant of motion, while H−

κ (t) no longer is.



Let V (x) be a continuous function, bounded from below. If the

energy operator Ĥ = −(~2/2m)∆ + V is self-adjoint in L2(Rn),

then exp(−iĤt/~) is unitary on L2(R) so that i~∂tψ = Ĥψ
(κ = 0).

In case of κ = 1 and κ = 2 we introduce two classes of external
potentials ±V (x), with +V (x) bounded from below.

We discriminate between the confining and scattering regimes
(we shall mention the case of periodic potentials later).

In case of κ = 2, a pair of time-adjoint parabolic equations
reads:

~∂tθ∗ = −Ĥθ∗

~∂tθ = Ĥθ

θ∗(x, t) = [exp(−Ĥt/~) θ∗](x, 0) represents a forward dynami-

cal semigroup evolution, while θ(x, T − t) = exp(+Ĥt/~) θ(x, T )
stands for a backward one.

One should consider the dynamics in a finite time interval [0, T ],
with suitable end-point data. This restriction is generic, although
not always necessary.

The corresponding modular Schrödinger equations (plus their
complex conjugate versions) read:

(i) κ = 0 =⇒ i~∂tψ = [−(~2/2m)∆ + V ]ψ

(ii) κ = 1 =⇒ i~∂tψ = [−(~2/2m)∆± V −Q]ψ

(iii) κ = 2 =⇒ i~∂tψ = [−(~2/2m)∆− V − 2Q]ψ.



Induced dynamical rules:

the continuity equation

∂tρ = −∇(ρ · v)

and the Hamilton-Jacobi type equations:

(i) κ = 0;

L = −ρ
[
∂ts + (m/2)(v2 + u2) + V

]
⇓

∂ts + (1/2m)(∇s)2 + (V +Q) = 0

(ii) κ = 1;
L = −ρ

[
∂ts + (m/2)v2 ± V

]
⇓

∂ts + (1/2m)(∇s)2 ± V = 0

(iii) κ = 2;

L = −ρ
[
∂ts + (m/2)(v2 − u2)− V

]
⇓

∂ts + (1/2m)(∇s)2 − (V +Q) = 0

On dynamically admitted fields ρ(t) and s(x, t), L(t) ≡ 0, i. e.
〈∂ts〉 = −H . The respective Hamiltonians follow:

H+ .
=

∫
dx ρ

[
(m/2)v2 + V + (m/2)u2

]
H±
cl
.
=

∫
dx ρ

[
(m/2)v2 ± V

]
H− .

=

∫
dx ρ

[
(m/2)v2 − V − (m/2)u2

]



Comments:

The evolution equations for F = −〈s〉, define dual pairs:

Ḟ = {F, H+} = −
∫
dx ρ

[m
2
v2 − V − m

2
u2

]
= −H−(t) ,

Ḟ = {F, H−} = −
∫
dx ρ

[m
2
v2 + V +

m

2
u2

]
= −H+(t)

and

Ḟ = {F, H+
cl} = −

∫
dx ρ

[m
2
v2 − V

]
= −H−

cl (t)

Ḟ = {F, H−
cl } = −

∫
dx ρ

[m
2
v2 + V

]
= −H+

cl (t) .

The motion rules for Ḟ (t) can be given more transparent form
by reintroducing constants H± of the respective motions.

Ḟ (t) = −m〈v2〉(t) +H±

and
Ḟ (t) = −m〈v2〉(t) +H±

cl .

The non-negative term m〈v2〉(t) actually represents the (Shan-
non) entropy production time rate.

Since H+ and H− are constants of respective motions,

F (t)− tH±

are monotonically decreasing in time quantities (Lyapunov func-
tionals ). This property extends to the H±

cl generated dynamics
as well.



Physics-related implementations of the dual dynamics:
An illusion of an ”imaginary time”

Harmonic oscillator and its inverted partner

Let us consider a standard classical harmonic oscillator problem,
where

H
.
=

p2

2m
+

1

2
mω2q2 (1)

is an obvious constant of motion for the Newtonian system ṗ =
mq̈ = −mω2q,

q(t) = q0 cosωt +
p0

mω
sinωt (2)

p(t) = p0 cosωt−mωq0 sinωt .

Clearly H = p2
0/2m + (mω2/2)q2

0 is a positive constant.

Instead of a trivial mapping ω → iω we follow an over-educated
route of an analytic continuation in time.

Consider the Wick rotation t→ −it, paralleled by the transfor-
mation of initial momentum data p0 → −ip0. We get:

H−ip0 = −p2
0/2m + (mω2/2)q2

0
.
= −H

and

q−ip0(−it)
.
= q(t) = q0 coshωt− p0

mω
sinhωt

together with

p−ip0(−it)
.
= +ip(t) = −ip0 coshωt + imωq0 sinhωt ,

which simply rewrites as

p(t) = −p0 coshωt +mωq0 sinhωt .



We observe that

q(−t) = q0 coshωt +
p0

mω
sinhωt

−p(−t) = p0 coshωt +mωq0 sinhωt

are the familiar inverted oscillator solutions, generated by H .

Equations of motion for q(t) and p(t) directly derive from the
Hamiltonian H−ip0 = −H with

H =
p2

2m
− 1

2
mω2q2

They give rise to the (inverted, sometimes interpreted as Euclidean)
Newton equation ṗ = mq̈ = +mω2q.

However ! the dynamics generated by H is related to that gen-
erated by −H by the time reflection: the latter dynamics runs
backwards, if the former runs forward.

The Euclidean connection goes beyond the confining vs scatter-
ing potential idea of ours and extends to bounded, like e.g. peri-
odic, potentials as well. Examples from the physics of instantons,
(all dimensional units are scaled away):

(i) static localized (kink) solutions φ(x) = ± tanh[(x−x0)/
√

2]
of the φ4 nonlinear field theory in one space dimension ∂2φ/∂t2−
∂2φ/∂x2 = φ−φ3 may be interpreted as Euclidean time solutions
q(τ ) = ± tanh[(τ − τ0)/

√
2] of the double well potential problem

d2q/dτ 2 = q3 − q

(ii) the kink solution φ(x) = ±4 tan−1[exp(x−x0)] of the sine-
Gordon equation ∂2φ/∂t2 − ∂2φ/∂x2 = − sinφ may be inter-
preted as a Euclidean time solution of a plane pendulum problem
d2q/dτ 2 = sin q, where a ”normal” choice V (q) = 1− cos q would
yield q̈ = − sin q.



Time duality in classical Hamilton-Jacobi evolutions

We have clear hints on how to connect the dual classical wave
theory evolutions, associated with Hamiltonians H±

cl .

We recall we have the dual Hamilton-Jacobi equations ∂ts +
(1/2m)(∇s)2±V = 0 and that there holds ∂tρ = −∇· (ρ v) with
v(x, t) = (1/m)∇s(x, t).

In the adopted notational convention, we define the initial data
s0(x) = −s0(x) and introduce an ”imaginary time” transformation

ψ(x, t) = ρ1/2 exp(is/2mD) −→ ψ(x, t)
.
= ψ−is0(x,−it) =

ρ
1/2
−is0(x,−it) exp[is−is0(x,−it)/2mD]

.
=

ρ1/2(x, t) exp[−s(x, t)/2mD] .

We note that limt↓0 is−is0(x,−it) = i(−is0)(x, 0) = s0(x).

Let us denote v = (1/m)∇s. Accordingly, we have replaced

H+
cl =

∫
dx ρ[(m/2)v2 + V ]

by

−H −
cl =

∫
dx ρ[−(m/2)v2 + V ]

There holds

∂tρ = −∇ · (ρv) −→ ∂tρ = +∇ · (ρ v)

which is the time reflected (backwards) evolution. Analogously

∂ts + (1/2m)(∇s)2 ± V = 0 −→ ∂ts− (1/2m)(∇s)2 + V = 0

where t→ −t induces an expected form of the dual H-J equation:

∂ts + (1/2m)(∇s)2 − V = 0 .



General notion of time duality

The analytic continuation in time directly extends to the general
pair H± of dual (quantum vs dissipative) Hamiltonians

H± =

∫
dx ρ

[m
2
v2 ± V ± m

2
u2

]
.

If ψ(x, t) actually is a solution of the Schrödinger equation

i(2mD)∂tψ = Ĥψ

then

ψ−is0(x,−it) = ρ1/2(x, t) exp[−s(x, t)/2mD]
.
= θ∗(x, t)

solves a backwards diffusion-type equation

−(2mD)∂tθ∗ = Ĥθ∗

while
θ(x, t) = ρ1/2(x, t) exp[+s(x, t)/2mD]

solves the forward equation

(2mD)∂tθ = Ĥθ .

In the above one may obviously identify D = kBT/mβ →
~/2m, but the κ scaling possibility should be kept in memory as
more natural tool.

The whole procedure can inverted and we can trace back a non-
dissipative quantum dynamics pattern which stays in affinity (du-
ality) with a given dissipative dynamics.



Diffusion-type processes: Smoluchowski process

The Hamiltonian appropriate for the description of dissipative
processes (strictly speaking, diffusion-type stochastic processes)
has the form

H− .
=

∫
dx ρ

[
(m/2)v2 − V − (m/2)u2

]
with the a priori chosen, continuous and bounded from below po-
tential V (x). It is the functional form of V (x) which determines
local characteristics of the diffusion process.

Once the Fokker-Planck equation is inferred

∂tρ = D∆ρ−∇(b · ρ) ,

where ρ0(x) stands for the initial condition, we adopt b = f/mγ
in the form f (x) = −∇V .

Coefficients: γ is a friction (damping) parameter and, instead of
D = ~/2m, we prefer to think in terms of D = kBT/mγ where T
stands for an (equilibrium) temperature of the reservoir.

An admissible form of V → f = −∇V must be compatible with
the Riccatti-type equation, provided the potential function V (x)
has been a priori chosen:

V (x) = m

[
1

2

(
f

mγ

)2

+D∇ ·
(
f

mγ

)]
.

The Fokker-Planck equation can rewritten as a continuity equa-
tion ∂tρ = −∇ · j with the diffusion current j in the form:

j = ρv =
ρ

mγ
[f − kBT∇ ln ρ]

.
=
ρ

m
∇s .

We recall the general definition of the current velocity v = (1/m)∇s.



The time-independent s = s(x) is here admissible, hence we
have actually determined

s = −1

γ
(V + kBT ln ρ)

whose negative mean value F = −〈s〉 defines the Helmholtz free
energy of the random motion:

Ψ
.
= γ F = U − TS ,

S .
= kB S stands for the Gibbs-Shannon entropy of the contin-

uous probability distribution, U = 〈V〉 is an internal energy.

Assuming ρ and ρV v to vanish at the integration volume bound-
aries, we get

Ψ̇ = −(mγ)
〈
v2

〉
= −kBT (Ṡ)int ≤ 0 . (3)

The Helmholtz free energy Ψ decreases as a function of time, or re-
mains constant, hence is a Lyapunov functional in the present case.

S(t) = −〈ln ρ〉 typically is not a conserved quantity. We impose
suitable boundary conditions and consider:

DṠ =
〈
v2

〉
− 〈b · v〉 .

which rewrites as follows

Ṡ = (Ṡ)int + (Ṡ)ext

where
kBT (Ṡ)int

.
= mγ

〈
v2

〉
≥ 0

stands for the entropy production rate, while

kBT (Ṡ)ext = −
∫
f · j dx = −mγ 〈b · v〉

(as long as negative) may be interpreted as the heat dissipation
rate:−

∫
f · j dx.



Let us consider the stationary regime Ṡ = 0 associated with an
(a priori assumed to exist) invariant density ρ∗. Then,

b = u = D∇ ln ρ∗

and

−(1/kBT )∇V = ∇ ln ρ∗ =⇒ ρ∗ =
1

Z
exp[−V/kBT ] .

Hence

−γs∗ = V + kBT ln ρ∗ =⇒ Ψ∗ = −kBT lnZ
.
= γF∗

with Z =
∫

exp(−V/kBT )dx.

Ψ∗ stands for a minimum of the time-dependent Helmholtz free
energy Ψ. Because of

Z = exp(−Ψ∗/kBT )

we have
ρ∗ = exp[(Ψ∗ − V )/kBT ] .

Therefore, the conditional Kullback-Leibler entropy Hc, of the
density ρ relative to an equilibrium (stationary) density ρ∗ acquires
the form

kBTHc
.
= −kBT

∫
ρ ln(

ρ

ρ∗
)dx = Ψ∗ − Ψ .

In view of the concavity property of the function f (w) = −w lnw,
Hc takes only negative values, with a maximum at 0. We have

Ψ∗ ≤ Ψ

and
kBT Ḣc = −Ψ̇ ≥ 0

Hc(t) is bound to grow monotonically towards 0, while Ψ(t) drops
down to its minimum Ψ∗ which is reached upon ρ∗.

Note that properties of the free Brownian motion can be easily
inferred by setting b ≡ 0 in the above discussion. Then, the dif-
fusive dynamics is sweeping and there is no asymptotic invariant
density, nor a finite minimum for Ψ(t) which decreases indefinitely.



Reintroducing duality

Once we set b = −2D∇Φ with Φ = Φ(x), a substitution:

ρ(x, t)
.
= θ∗(x, t) exp[−Φ(x)]

with θ∗ and Φ being real functions, converts the Fokker-Planck
equation into a generalized diffusion equation for θ∗:

∂tθ∗ = D∆θ∗ −
V (x)

2mD
θ∗

and its (here trivialized in view of the time-independence of Φ)
time adjoint

∂tθ = −D∆θ +
V (x)

2mD
θ

A real solution is θ(x, t) = exp[−Φ(x)] and there holds (to be
regarded as an identity, not an equation to be solved)

V (x)

2mD
=

1

2
(
b2

2D
+∇ · b) = D[(∇Φ)2 −∆Φ] .

Let us note an obvious factorization property for the Fokker-
Planck probability density:

ρ(x, t) = θ(x, t) · θ∗(x, t)

In view of (we restore an explicit ”overline” notation):

ρ1/2(x, t) exp[−s(x, t)/2mD]
.
= θ∗(x, t)

we immediately recover

s = (2mD)[Φ− (1/2) ln ρ]

If there are no external forces, Φ disappears and we are left with
the free Brownian motion associated with s = −mD ln ρ.

Thank you for attention


