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Text-book wisdom

”Isolated systems evolve to the state of equilibrium in which
the entropy reaches its maximal value”

”The entropy is a measure of the degree of randomness”
”The heat bath drives an open system to its equilibrium state

at the bath temperature”

Associations

non-equilibrium random dynamics → asymptotic equilibrium
(un)certainty, information, entropy functionals, entropy and time

Entropic mess

(Partially random order:) Boltzmann, Gibbs, Shannon, relative, condi-
tional, Kullback-Leibler, Renyi, Tsallis, Wehrl, ..., information entropy,
differential entropy, Kolmogorov-Sinai entropy...von Neumann

Problem addressed

time evolution of a continuous probability density → dynamics of its entropy

ρ(x) → ρ(x, t) =⇒ S(ρ) → S(ρ)(t)

⇓

entropy methods in random motion

⇓
Laws of thermodynamics and Helmholtz-type extremum principles in diffusion processes



”Everything of importance has been said before
by someone who did not discover it”

⇓
”Nothing is ever discovered for the first time”

(laws of discovery, after M. V. Berry and A.Whitehead)

”Nobody knows what entropy is in reality, that is why
in the debate you will always have an advantage” ( J. von Neumann, 1948)

”In the physical sciences, the entropy
is a measure of the degree of randomness
and the tendency of physical systems

to become less and less organized”

”The usefulness of the concept of entropy (and the Second Law) depends
on our ability to define entropy of a physical system in a calculable way.”

Text-book wisdom:

”All isolated systems evolve to the state of equilibrium
in which the entropy reaches its maximal value”

”The heat bath drives an open system to its equilibrium state at the bath temperature”

Adopted hierarchy of thermodynamical systems:

isolated
closed
open

(borrowed from the Glansdorf - Prigogine theory of non-equilibrium phenomena)



Entropy methods in random motion:
(e.g. the large time asymptotic of the heat and Fokker-Planck equations)

(i) Consider ∂tu = ∆u, with x ∈ Rn, t ∈ R+ and u(., t = 0) =
u0(.) ≥ 0 and

∫
u0(x)dx = 1. As t → ∞, we have u(x, t) ' ρ(x, t) =

(4πt)−n/2 exp[−x2/4t].

Analyze the t→∞ rate of convergence of

‖u− ρ‖L1(t)
.
=

∫
|u(x, t)− ρ(x, t)|dx

Note that for two density functions f and g we have the Csiszár-
Kullback inequality:

K(f, g) =

∫
f ln(f/g)dx ≥ (1/2)‖f − g‖2

L1

Outcome (i): If ρt is a solution of the heat equation with the initial
data ρ0 and one takes ρα(x) = (1/

√
2απ) exp[−x2/2α], then we have an

asymptotic 1/t decay of the initially prescribed Kullback-Leibler ”distance”

K(ρt, ρα+kt) ≤ K(ρ0, ρα)[α/(α + kt)] .

(ii) Consider ∂tf = ∆f + ∇ · (bf), where f(., t) = f0 ≥ 0,∫
f0(x)dx = 1. We assume that the forward drift b = b(x) has a gra-

dient form.

Analyze: Let f∗ be the stationary solution of the F-P equation, what is
the t → ∞ rate of convergence of ‖f − f∗‖L1(t)

.
=

∫
|f(x, t) − f∗(x)|dx

towards the value 0 ?

Outcome (ii): The outcome, albeit not completely general, is that
ft

.
= f(x, t), t ≥ 0 decays in relative entropy to a Gaussian, the speed of

such decay being exponential

Hc(t) ' exp(−αt)Hc(0) ,

where Hc(t)
.
= Hc(ft, f∗)

.
= −K(ft, f∗), with α > 0 and t > 0.



Quantum ”detour” - thermodynamics of open systems

(after R. Alicki, (2000))

(i) take for granted that the bath drives the system to an equilib-
rium state

ρt stands for the (reduced) density matrix of a quantum system in a com-
bined weak coupling and adiabatic approximation of the general system-
reservoir dynamic problem, t ≥ 0:

d

dt
ρt = −i[Hsys(t), ρt] + Ldiss(t)ρt

.
= L(t)ρt

An internal energy of the system:

E(t) = Tr(ρtHsys(t))

The work performed on the system by external forces:

W (t) =

∫ t

0
Tr[ρs(

d

ds
Hsys(s))]ds

The heat supplied to the system by the reservoir:

Q(t) =

∫ t

0
Tr[(

d

ds
ρs)Hsys(s)]ds

(ii) The first law of thermodynamics:

d

dt
E(t) =

d

dt
W (t) +

d

dt
Q(t)

(iii) The second law of thermodynamics:
- use the relative entropy S(ρ|σ) = Tr(ρ ln ρ− ρ lnσ) and a station-

ary state input: L(t)ρeq = 0 , with ρeq = Z−1 exp[−βHsys(t)]. Then:

d

dt
S(ρt|ρeq) = σ(ρt) +

1

T

dQ

dt

where σ(ρt) ≥ 0 stands for the entropy production, while Q̇/T refers
to the entropy/heat exchange with the bath. So, TdS ≥ dQ.



Thermodynamics of closed but non-isolated systems - A resumé

(Back to the classical Glansdorf-Prigogine lore)

Ist law:
dU = dQ+ dW

IInd law:
dS = dintS + dextS

dintS ≥ 0

dextS =
dQ

T
(For a reversible process we have dintS = 0)

Large time behavior - Extremum principles for irreversible processes

(1) U and V (volume) constant → maximum of entropy is preferred:

dintS = TdS − dQ ≥ 0

together with a minimum for the entropy production:

d

dt

(
dintS

dt

)
< 0

(2) S and V constant → minimum internal energy is preferred:

dU = −TdintS ≤ 0

(3) T and V constant → minimum of F = U − TS (Helmholtz free
energy) is preferred:

dF = −TdintS ≤ 0

(4) further principles refer to the minimum of the Gibbs free energy and
this of enthalpy (we skip them)

(according to Kondepudi and Prigogine, 1998)



Helmholtz free energy - complements

Consider an equilibrium state in statistical mechanics, with β as an
inverse temperature.

i-th microstate: energy (level) Ei, i ∈ I, with statistical weight exp(−βEi)

macrostate: choose a sample E
.
= {Ei1, Ei2, ..., Ein, ...}

⇓
free anergy F

F (β) = −1

β
lnZ(β)

statistical sum (partition function) Z

Z(β) =
∑
E

exp(−βEi)

internal energy notion U

U = − ∂

∂β
lnZ(β) = 〈E〉 .=

∑
i

Ei exp(−βEi)

entropy notion S, (T = 1/β)

U − F
.
= TS

”maximum entropy principle”

⇓
”principle of minimum free energy”

Let pi be a probability of occurence of a microstate Ei in the macrostate
configuration E,

∑
pi = 1.

A minimum of

F = U − β−1S = F [p] =
∑

i

(piEi +
1

β
pi ln pi)

is achieved for a canonical distribution:

pi =
1

Z
exp(−βEi)



Define S[p] = −
∑
pi ln pi and U =

∑
Eipi.

In order to get an equilibrium distribution associated with the Shannon
(Boltzman-Gibbs) entropy S, we need to extremize the functional:

Φ[p] = −
∑

pi ln pi − α
∑

pi − β
∑

Eipi

where α and β are the Lagrange multipliers
We have (p∗i denotes an equilibrium probability, e.g. an ultimate solution)

δΦ[p] = 0 = [− ln p∗i − 1− α− βEi]δpi

(with arbitrary variations δpi). Multiply the result by pi, sum up, use
the constraints (normalization and the fixed internal energy value) →

α + 1 = S∗ − βU∗

⇓

p∗i = exp[−S∗ + βU∗] exp(−βEi) = exp β(F∗ − Ei)
.
=

1

Z
exp(−βEi)

Notice that we deal here with a discrete probability measure, i.e. the set
of p∗i ’s such that

∑
p∗i = 1.

S∗ is the Shannon entropy of this discrete measure. In view of F =
U − β−1S, the Shannon entropy has been maximized under the normal-
ization (probability measure) and fixed internal energy constraints.

To be sure that the above F ∗ is indeed a minimum, let us consider the
relative Kullback-Leibler entropy:

K(p, q)
.
=

∑
pi ln(

pi

qi
)

and use the measure p∗ ≡ {p∗i} as the reference one (e g. q):

We have ( K is a convex function with a minimum at 0):

K(p, p∗) = −S −
∑

pi[−S∗ + βU∗ − βEi] = β(F − F∗) ≥ 0



Thermodynamics of random motion

mẍ+mγẋ = −∇V (x, t) + ξ(t)

〈fξ(t)〉 = 0

〈ξ(t)ξ(t′)〉 =
√

2mγkBT δ(t− t′)

⇓
∂

∂t
f(x, u, t) =

[
− ∂

∂x
u+

∂

∂u
(γu+ (1/m)∇V (x, t)) +

γkBT

m

∂2

∂u2

]
f(x, u, t)

Define (we leave aside an issue of dimensional adjustments):

S(t) = −
∫
dx duf ln f = −〈ln f〉

E(x, u, t) =
mu2

2
+ V (x, t) → U = 〈E〉

The Ist law dU = dQ+ dW takes the form

Q̇+ Ẇ = U̇

where Ẇ = 〈∂tV 〉 stands for the work externally performed upon the
system.

With assumptions concerning the proper behavior of f(x, u, t) at x, u
integration boundaries (sufficiently rapid decay at infinities) we have:

Q̇ = γ(kBT − 〈mu2〉)

Ṡ = γ

[
kBT

m
〈
(
∂ ln f

∂u

)2

〉 − 1

]

and hence, in view of (1/T )dQ = dextS the IInd law follows:

Q̇ − kBT Ṡ = − γ

m
〈
(
kBT

∂ ln f

∂u
+mu

)2

〉 = −T Ṡint ≤ 0

We denote S
.
= kBS and so arrive at Q̇ ≤ T Ṡ i.e. dQ ≤ TdS.



An obvious analog of the Helmholtz free energy reads:

F
.
= 〈E + kBT ln f〉 = U − TS

⇓
Ḟ − Ẇ = Q̇− T Ṡ = −T Ṡint ≤ 0

A byproduct of our discussion is: dF ≤ dW (!)
For time-independent V = V (x) we have the standard Helmholtz ex-
tremum principle, i.e. the F -theorem:

Ḟ = Q̇− T Ṡ
.
= −T Ṡint ≤ 0

⇓
dF = −TdSint ≤ 0

setting a minimum of F at F∗. That is determined in terms of a unique

stationary state f∗(x, u) = 1
Z exp

[
−E(x,u)

kBT

]
, towards which any initially

given f asymptotically relaxes.

Thermodynamics of spatial random motion

ẋ = b(x, t) + A(t)

〈A(s)〉 = 0 , 〈A(s)A(s′)〉 =
√

2Dδ(s− s′)

⇓

∂tρ = D4ρ−∇ · (bρ)

We assume the gradient form for b = b(x, t), D is a diffusion constant with
dimensions of ~/2m or kBT/mβ. By introducing u(x, t) = D∇ ln ρ(x, t)
we deduce v(x, t) = b(x, t)− u(x, t) ⇒ ∂tρ = −∇(vρ).

The Shannon entropy, typically is not a conserved quantity.

S(t) = −
∫
ρ(x, t) ln ρ(x, t) dx = 〈ln ρ〉

⇓



(with boundary restrictions that ρ, vρ, bρ vanish at spatial infinities or finite
interval borders, remembering that v = b+ u and u = D∇ ln ρ)

dS
dt

=

∫
[ρ (∇ · b) +D · (∇ ρ)2

ρ
] dx

m
DṠ .

= D 〈∇ · b〉+
〈
u2〉 = −〈v · u〉 =

〈
v2〉− 〈b · v〉

m

Ṡ = Ṡint + Ṡext

where:

kBT Ṡint
.
= mβ

〈
v2〉 ≥ 0

stands for the information entropy production.

Upon setting b = F
mβ and D = kBT/mβ we have

kBT Ṡext
.
= Q̇ .

= −
∫
F · j dx = −mβ 〈b · v〉

which (as long as negative !!!) may be interpreted as the heat dissipa-
tion rate.

In view of: Q̇ = −
∫
F · j dx, there is definitely some form of power

release involved.

Note: with T Ṡ
.
= kBT Ṡ, we do have the IInd law:

T Ṡint = T Ṡ − Q̇ ≥ 0 ⇒ T Ṡ ≥ Q̇



We assume that V = V (x) does not depend on time and therefore:

j = ρv =
ρ

mβ
[F − kBT∇ ln ρ]

.
= − ρ

mβ
∇Ψ

i.e. v = −(1/mβ)∇Ψ. Since F = −∇V , we can define:

Ψ = V + kBT ln ρ

⇓
〈Ψ〉 = 〈V 〉 − TS

where S
.
= kBS.

We recognize the familiar formula

F = U − TS

(1) F
.
=< Ψ > stands for theHelmholtz free energy

(2) U
.
=< V > stands for the (mean) internal energy

⇓
(ρV v needs to vanish at the integration volume boundaries)

Ḟ = Q̇− T Ṡ = −(mβ)
〈
v2〉 = −kBT Ṡint ≤ 0

As long as there is an information entropy production, the ”Helmholtz
free energy” decreases as a function of time towards its minimum. If there
is none, the ”Helmholtz free energy” remains constant.

For the special case of the free Brownian motion we have V = 0 = b,
while v = −D∇ ln ρ = −u, and so (recognize the Fisher information
functional):

Q̇ = 0 ⇒ Ḟ = −T Ṡ = −mβD2
∫

[
(∇ ρ)2

ρ
] dx ≤ 0

In the present case S(t) grows monotonically with time.



Quantum mechanical INTERLUDE

- Coherent state

ρ(x) = 1
[2πσ2]1/2 exp

[
− (x−x0)2

2σ2

]
⇓

S(ρ) = 1
2 ln(2πeσ2)

- Coherent state for the harmonic oscillator; D = ~/2m and
q(t) = q0 cos(ωt) + (p0/mω) sin(ωt),
p(t) = p0 cos(ωt)−mωq0 sin(ωt).

ρ(x, t) =

(
2πD

ω

)−1/2

exp
[
− ω

2D
(x− q(t))2

]
⇓

σ2 =
D

ω
→ dS

dt
= 0

- Free quantum dynamics for a Gaussian wave-packet

ρ(x, t) =
α

[π(α4 + 4D2t2)]1/2 exp

(
− x2α2

α4 + 4D2t2

)
.

⇓

σ2 → σ2(t) =
α4 + 4D2t2

2α2 → dS
dt

=
4D2t

α4 + 4D2t2

- Squeezed state of the oscillator (atomic units)

σ2 → σ2(t) =
1

2

(
1

s2 sin2 t+ s2 cos2 t

)
- Non-quantum example: free Brownian motion; D = kBT/mβ

σ2 → σ2(t) = 2Dt



Side comment (i):

For general probability distributions p(x) with a fixed variance σ we
have S(p) ≤ 1

2 ln(2πeσ2). S(p) would become maximized if and only if p is
a Gaussian: p→ ρ.

Side comment (ii):

We address a general time-dependent setting. Before, by admitting
σ = σ(t), we gave a number of examples for time-dependent information
entropy S(ρt) (c.f. free quantum evolution, in the non-quantum context a
good example is the free Brownian motion).

Side comment (iii):

Recall the Fourier transform for normalized Schrödinger wave functions,
together with the notions of position and momentum representation
wave packets.

Given an eigenfunction ψ(x) of the energy operator, we denote (Fψ)(p)
its Fourier transform. The corresponding probability densities follow:

ρ(x) = |ψ(x)|2 and ρ̃(p) = |(Fψ)(p)|2.

Denote:

Sq = −
∫
ρ(x) ln ρ(x)dx and Sp = −

∫
ρ̃(p) ln ρ̃(p)dp

There holds the entropic uncertainty relation (Bia lynicki-Birula/Mycielski)
between two forms (position and momentum respectively) of the informa-
tion entropy:

Sq + Sp ≥ (1 + ln π)

In case of more than one space dimension, an extra factor d (dimension-
ality) should precede (1 + lnπ).



Measures of localization, ENTROPIC INEQUALITIES

For an ρ with finite mean and variance fixed at σ2, we have:

S(ρ) ≤ 1
2 ln (2πeσ2)

⇓

1√
2πe

exp[S(ρ)] ≤ σ

We consider ρα
.
= ρ(x−α) and fix at σ2 the value 〈(x−α)2〉 = 〈x2〉−α2

of the variance. Let us define the Fisher information (localization measure)
of ρα:

Fα
.
=

∫ 1
ρα

(
∂ρα

∂α

)2
dx ≥ 1

σ2

INEQUALITIES OF VARIOUS SORTS FOLLOW

1
σ2 ≤ (2πe) exp[−2S(ρ)] ≤ Fα

Under an additional decomposition/factorization ansatz (of the quan-
tum mechanical L2(Rn) provenance) that ρ(x)

.
= |ψ|2(x), where a real or

complex function ψ =
√
ρ exp(iφ) is a normalized element of L2(R),we

have:

Fα = 4
∫ (

∂
√

ρ

∂x

)2
dx ≤ 16π2σ̃2

1
σ2 ≤ Fα ≤ 16π2σ̃2

1
4πσ̃ ≤

1√
2πe

exp[S(ρ)] ≤ σ

Outcome: the differential entropy S(ρ) typically may be expected to
be a well behaved quantity: with finite both lower and upper bounds.



Thermodynamics of the Schrödinger picture evolution
(A disreputed (?) hint: ”la thermodynamique cachée” after L. de Broglie)

i∂tψ = −D∆ψ +
V

2mD
ψ .

V = V(−→x , t), continuous (it is useful, if bounded from below) function
with dimensions of energy, D = ~/2m
(After L. de Broglie, we can set kBT0

.= ~ω0
.= mc2 which yields D = ~/2m ≡ kBT0/m(2ω0) i.e.

β ≡ 2ω0)
Admit the Madelung decomposition: ψ = ρ1/2 exp(is/2D) with the

phase function s = s(x, t) defining v = ∇s

⇓
∂tρ = −∇(vρ)

∂ts+
1

2
(∇s)2 + (Ω−Q) = 0

Ω
.
= V/m

Q = 2D2∆ρ1/2

ρ1/2 =
1

2
u2 +D∇ · u

The probability density |ψ|2 = ρ is propagated by a Fokker-Planck equa-
tion with the drift b = v − u = ∇(s−D ln ρ) where u = D∇ ln ρ.

∂tρ = D4ρ−∇ · (bρ)

S(t) = −
∫
ρ(x, t) ln ρ(x, t) dx

⇓
DṠ =

〈
v2〉− 〈b · v〉 .= D(Ṡint + Ṡext)

which is a direct analog of the IInd law:

Ṡint = Ṡ − Ṡext = (1/D)
〈
v2〉 ≥ 0 ⇒ Ṡ ≥ Ṡext



To arrive at an analog of the Ist law, we need to translate to the present
setting the previous thermodynamic notions U and F = U − TS. Define:

v = ∇s = ∇(s+D ln ρ)−D∇ ln ρ
.
=

− 1

mβ
∇(V + kBT0 ln ρ)

.
= − 1

mβ
∇Ψ

so we have

−mβ〈s〉 ≡ 〈Ψ〉 = 〈V 〉 − T0S =⇒ F = U − T0S .

With b(x, t) = −(1/mβ)∇V , we finally recover the Ist law:

U̇ = 〈∂tV 〉 −mβ〈bv〉 = Ẇ + Q̇

with the externally performed work entry Ẇ = 〈∂tV 〉 and kBT0Ṡext =
Q̇ = −mβ〈bv〉.

The unitary quantum dynamics warrants the existence of an obvious
constant (!) of motion, the mean value of an energy operator (Hamiltonian
of the system 〈ψ|Ĥ|ψ〉 .= mH:

H = (1/2)[
〈
v2〉 +

〈
u2〉] + 〈Ω〉 = −〈∂ts〉

.
= E = const .

Therefore the Helmholtz-type extremum principle for the quantum
motion reads:

Ḟ − Ẇ = −mβ0
d

dt
(〈s〉+ Et) = −T Ṡint ≤ 0 .

and we note that the property Ḟ ≤ Ẇ is common to all hitherto con-
sidered dissipative and non-dissipative cases.



Thermodynamic discrimination between random and quantum motions

Quantum : Ḟ − Ẇ = −mβ0
d

dt
(〈s〉+ Et) = −T0Ṡint ≤ 0 .

Random : Ḟ − Ẇ = Ḟ − 〈∂tV 〉 = −T Ṡint ≤ 0 ,

Note 1: For Smoluchowski processes Ẇ = 0 and thus Ḟ = −Ṡint ≤ 0.

Note 2: For phase space diffusion processes we have Ẇ = 〈∂tV 〉 ≥ 0
for the ”work performed upon the system” and Ẇ = 〈∂tV 〉 < 0 for the
”work performed by the system”. In the latter case Ḟ ≤ 0, otherwise Ḟ
may be positive or have undefined sign.

Note 3: Let us invoke the minimum entropy production principle:

d

dt
Ṡint < 0

typically expected to hold for dissipative motions. Then dḞ /dt > 0 for a
negative-definite function Ḟ , or d(Ḟ − Ẇ )/dt > 0 for a negative definite
Ḟ − Ẇ .

Note 4: In the quantum motion the sign of dṠint/dt is undefined in:

d

dt
Ḟ = −T0

d

dt
Ṡint

Remembering that T0Ṡint = mβ0〈v2〉 and recalling the respective forms of
Hquantum and Hdiffusion, we have:

quantum case

d

dt
Ḟ = + β0

d

dt
(m〈u2〉+ 2〈V〉)

diffusion

d

dt
Ḟ = − β0

d

dt
(m〈u2〉+ 2〈V〉



Case 1: Free evolution

ρ(x, t) =
α

[π(α4 + 4D2t2)]1/2 exp

(
− x2α2

α4 + 4D2t2

)
s(x, t) =

2D2x2t

α4 + 4D2t2
−D2 arctan

(
−2Dt

α2

)

D(Ṡ)int =
〈
v2〉 =

8D4t2

α2(α4 + 4D2t2)

E =
1

2
(〈v2〉+ 〈u2〉) =

D2

α2 ,

The entropy production attains its maximum and Ḟ decreases towards its
minimal value Ḟmin = mβ0E − T0Ṡ

max
int .

Case 2: Steady state in a harmonic potential V = 1
2ω

2x

ρ(x, t) =
( ω

2πD

)1/2
exp

[
− ω

2D
(x− q(t))2

]
s(x, t) = (1/m) [xp(t)− (1/2)p(t)q(t)−mDωt] ,

q(t) = q0 cos(ωt) + (p0/mω) sin(ωt) and p(t) = p0 cos(ωt) −mωq0 sin(ωt).
v = ∇s = p(t)/m

D(Ṡ)in =
p2(t)

m2

so that in view of E/m = E = p2
0/2m

2 +ωx2
0/2+Dω and D = kBT/mβ0 =

~/2m, we get

Ḟ = ωkBT0 +mβ0[
p2

0

2m2 + ω
x2

0

2
− p2(t)

m2 ] = ωkBT0 + β0[mω
x2(t)

2
− p2(t)

2m
] .

Case 3: Stationary state
We take a harmonic oscillator ground state as a reference. The entropy
production vanishes, since v = 0. Then, we have Ḟ = mβ0E0 = β0E0,
where E0 = ~ω/2 = mDω. Therefore

F (t) = (kBT0)ωt+ const

Because of −mβ0〈s〉 = F and 〈s〉 = s, we have

s(t) = −Dωt+ const ,

as should be the case in the exponent of the stationary wave function
ψ = ρ1/2 exp(is/2D). Indeed, −E0t/2D = −ωt/2 = s(t)/2D − const.



OUTLOOK

(i) The major observation of the paper is that the Helmholtz F-
theorem, while enhanced by the external work term, appears to be more
universal than expected. An unambiguous meaning can be given to
the two laws of thermodynamics far beyond their (equilibrium ther-
modynamics) domain of origin.

(ii) What seems to be worth further investigation is a physically deeper
insight into the functioning of the work term Ẇ , here identified with the
time rate of ”work performed upon the system”, or alternatively - if
negative - that of ”work performed by the system”.

(iii) The notion of the physically active ”environment” or ”sur-
rounding” seems to be not implicit, but necessary for a consistency of the
formalism.

Notice that there is a profound difference between the dissipative and quantum motion scenarios

which can be seen in the asymptotic behavior of principal quantities. The F-theorem for standard

diffusion processes gives account of the possible convergence of a probability density to the stationary

(equilibrium) one. In the quantum setting it is the temporal behavior of the mean value of the quantum

phase that carries a signature of (whatever) ”quantum equilibrium”. This equilibrium notion has no

affinity with the quantum probability density asymptotic.
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