Random dynamics in a trap: killing versus survival
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Diffusion in a bounded domain with absorbing boundaries
versus permanently trapped diffusion process inthe same
bounded domain.
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Direct pictorial inspiration



Diffusion in a bounded domain (interval, disc, sphere) with absorption (killing) at the
boundary. Inventory: first passage time, mean FPT, survival probability and its
asymptotic decay. How to make survival longer, ultimately eternal ?

)

o
| ”VF)
ks N

| /;

[ W=/ h.!

S

CAMBRIDGF 1OAISIEMAD

Interval with absorbing ends — directly from Redner’s book
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The effect of these boundary conditions can be captured by seffing e=0 on bath boundaries: both act like perfectly
absorbing walls.

Survival probability
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Enforcing the long term survival (against the odds, taboo)

I

[
Brownian motion (diffusion) + fear = long term survival due to conditioning
in a bounded domain (conditioning) (what that conditioned BM actually is ?),
with absorbing boundaries Genuine random motionin a trap !

Some related hints (how to increase the survival probability in a bounded domain)

S. Redner, P. L. Krapivsky: , Life and death at the edge of a windy cliff” (1996)
(diffusing agent dies while reaching the edge, being subject to the strong ,wind shear” )

P.L. Krapivsky, S. Redner, ,Life and death in the cage and at the edge of the cliff’ (1999); (, diffusing
prisoner”, expanding cage)

M. Li, N. D. Pearson, A. M. Poteshman, ,, Conditional estimation of diffusion processes”, ). Financial

Economics 74, (2004, 31-66; ,time series of interest rate data, conditioned to remain between upper
and lower boundaries”



M. Droz, A. Pekalski [ Physica A 470 (2017 ) 82-87
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Fig. 1. Time dependence of the density for the M1 and M2 models. Colour online.

Fig. 3. Ratio of movements in the direction towards the sinks (To) and away from them (From)

A special feature of Monte Carlo updating procedures is the direction of the average movements of
the particles. In the red-marked case they are moving away from the edges, towards the centre, while
in the other average jumps are directed towards the edges.”

Recently, Agranov et al. considered the case where diffusing (dense gas of) particles, contained in a
d-dimensional box, are absorbed when they reach the boundaries. In particular, they investigated,
using macroscopic fluctuation theory, the probability that no particle is absorbed duringa timeT
and addressed an issue of large T.
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g(x) = 2ngcos” [ — density profile g(x.t) 1s stationary ' _
f (*R} Compare e.g. H. Risken’s BM in a trap

v(x) = —j’l tan {f—;\] gradient (forward drift !) field,



Interval with absorbing ends, told anew

Free diffusion dik = DAFE is considered within an interval €2 = [a,b] C R,

with absorbing boundary conditions at its end points a and b
Its time and space homogenous transition density,

with =,y € (a,b), 0 < s <t and b—a = L reads

k(x, =z 25" sin ( (x — a)} Sin ( (y — a)) exp (—DE—TH — S})

We note that lim; .. k(. t|ly,s) = d(z — y)

From now on we employ the symmetric interval [—c, ¢] with L = 2¢,¢ > 0. We

set D =1/2

At this point we define a conditional transition probability density for the process
"living”in (—¢,¢) up to time T' (might be interpreted as the a priori set survival
time.

A conditional probability that no absorption takes place at the boundaries of
[—c, c], in a prescribed time interval [0, T'], can be rephrased in terms of a condition
that max |X(7)| < ¢ holds true for all times ¢t < [0, T7].



Conditioning — towards taboo processes

E(y, s|z, t) k(x, tlu, T)
E(y, s|u, T)

ply, s;z. tyu, T) =

Note. We hereby answer the following question: assuming that the test particle
originates from y at s, and terminates its route at (in the vicinity of) u
at time T, what is the probability to find it in between x and = + Ax
at the intermediate time £, s <t < T,

For sufficiently large value of T,

m m 2
k(x, tlu,T) ~ 5i11[f(:r. + )] sin[E(u + ¢)] exp (_E(T — t))

wit k(y, s|u, I') obtained form k(x, t|u,T’) by replacements r — y, t — s.



Accordingly (remember about T > t and L = 2¢) we arrive at a conditioned
transition density

sin[2-(x + ¢)] 72
Prrap(y, 8|7, ) ~ k(y, s|lz,t) —= exp | +25(t—s)

Instead of ~ we actually reach an equality, if the limit T — oo 18 executed.

We note that sin[-(z + ¢) = cos(Lx)

By general principles, we have thus arrived at the transition probability density
of the diffusion process with inaccessible boundaries +¢, whose forward drift reads

0y 0y ™
b(x) =VIn CD&(%I—} =~ tdn(ﬁ;r.)

and the corresponding Fokker-Planck equation has the form d;p = %&p — V(bp)

"
Fs

dX, = b(X,)dt + dB, provides a path-wise background



Visualization of the interval as a permanent trap for random motion:
left, probability density, right the forward F-P eq. drift b(x)

More abstract setting: eigenfunction expansions on the interval and on the disk

We point out an obvious link with the standard (quantum mechanical by prove-
nance) spectral problem for the operator —%i’\ in an infinite well. Denoting A,
n = 1,2,... the eigenvalues and ¢,,n = 1,2,... the orthonormal basis system
composed of the eigenfunctions ¢,, we realize that k(y, s|r,t) is the integral
(Feynman-Kac) kernel of the semigroup operator expi(t — s)Ap), where the
notation Ap directly refers to the absorbing boundary data for the domain D .



In the F-K formula context, it has become a classic to interpret k(y, s|z, ) for the
interval problem as a definition of Ap, while being determined entirely in terms of
sample paths w (here w(s) = y while w(t) = ) that survive within the interval
(—e, ¢) up to time t, while being started within that interval at s < ¢

%&D)](% z) = f s yat(W) = Hsyae(w)

In parallel, a spectral decomposition of Ap allows to rewrite k(y, s|x, t) in a handy
form:

lexp((t — s)

k(y, s|z,t) = ZE“”}“ (2)dn(y)

We can recast the previous conditional transition density p(y, s; z,t;u,T') in terms
of the eigenfunctions expanded kernels

It is clear that under suitable regularity assumptions concerning the 7" — oo
limit, specifically that k(y, s|u, T) ~ &1 (y)o1(u) exp(—A (T — s)), we arrive at

&
Purap(y; 8|2,t) = k(y, |z, t)———eth ()

as anticipated previously (setting e.g. \; = r,; and ¢y (r) = \/% cos(mx/L)).

Py, 5[2,2) ~ (83(2))? = p(e) = 7 cosi(mz/L)



Back to the cliffy island (disk) with a fearful Brownian agent

Coming back to the "fearful” Brownian walker on the cliffy island, we should in
fact consider (that is for simplicty) a domain in the regular disc shape, i.e. the
circle of a fixed radius R. The spectral solution for such domain (2D version of the
previous (—e,c) interval problem is well known, albeit somewhat murky form the
casual (user friendly) point of view.

We know explicitly the spectral solution for the disk

0
‘E":{y: S|I: t) — Z E_An[t_s) {}r}’n(T)@n(y)

n=1



Coming back to the "fearful” Brownian walker on the cliffy island, we should in
fact consider (that is for simplicty) a domain in the regular disc shape, i.e. the
circle of a fixed radius K. The spectral solution for such domain (2D version of the
previous (—e,¢) interval problem is well known, albeit somewhat murky form the
casual (user friendly) point of view.

Since we are interested in the long T' duration of the conditioned process, we need
basically the knowledge of the stationary density and the forward drift. In the
present case these read respectively:

LRCD
.-G( ) _?i?[:zlj _‘;'-}1( }

where 2z = 2.4048... is the first positive zero of the Bessel function jy(r), and (here

t=(1/7)(z,y,2))

. 201 () .
b(r) =Vind(r) = —#&i?r

The Fokker-Planck operator takes the form: (1/2)A — Vb(r),-).



Visualization of the disk (cliffy island) as a permanent
trap for random motion: left - probability density,
right - the forward Fokker-Planck equation drift b(x)
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General approach to stochastic processes with killing:
towards an eternal life-time (suppression of killing means conditioning)

It 1s well known that operators of the form H=—-A+V >0withV >0 give rise to
transition kernels of diffusion -type Markovian processes with killing (absorption),
whose rate is determined by the value of V(z) at + € R. That interpretation
stems from the celebrated Feynman-Kac (path integration) formula, which assigns
to exp(—}:’t) the positive integral kernel.

[exp(— {t—S}{——&Hf (y, ) /exp f 7))dT] dpts y 2 (W)

In terms of Wiener paths that kernel is constructed as a path integral over paths
that get killed at a point X; = x at time ¢ in the time interval dt, with a probability
V(z)dt (note that physical dimensions of of V' before scaling them out, were J/s,
that is usually secured by a factor 1/2mD or 1/h). The killed path is henceforth
remowed from the ensemble of on-going Wiener paths.



Given a discrete spectral solution for H = —A+V with V(z) = 0, comprising
the monotonically growing series of non-degenerate positive elgnevalues, with real

L*(R) eigenfunctions. The integral kernel of exp(—tH) has the time-homogeneous
form

k(y,x,t) = k(r,y,t) = ZE‘KP —€;t) dj(y)d;(x).

Consider the harmonic oscillator problem with H = (1/2)(—A + z2).

The integral kernel of expf—fﬁ ) is given by a classic Mehler formula:

k(i 2,1) = fexp(—tH) (1, 2) = <z expl=(a+1)/2) 3 5o Ho(o) () expl(—e: ) =

exp(—t/2) (71 — exp(—2t)]) "2 exp {—1(:.52 —y7) — (z—ey) ] =

> A=)
1 (z* + y?) cosht — 2y
. 72 AP |~ g
(27 sinh )4 2sinht

where €, = n + 3, ¢,(x) = [4"(n!)*r]"V*exp(—2?/2) H,(x) is the L*(R) nor-
malized Hermite (eigen)function, while H,(x) is the n-th Hermite polynomial

Hy(z) = (—1)"(expa?) L exp(—22).



Conditioning: Let us define — T — t and accordingly consider k(y,t|z,T) = k(T —t,z,v)
k(y, s|lz, t)k(z, t|u, T)
k(y, s|u,T)

and mvestigate the T' — oc limit. Since we have

py, sz, tu, T) =

1 |
. — —=(r?+u?)
E(x,tlu,T) Y gy ez
we readily arrive at the transition probability density p(y, s, r,t) = pr_«(x|y)

of the familiar Ornstein-Uhlenbeck process

exp(—z?/2) elt=3)/2 —
exp (—vy?/2)

ply.six,t:u, T) — p(y, s, x,t) = k(y, s, x, 1)

. _ e lt—s),02
1T Eplf—s —2(t—s)y1—1/2 r €
k2.0 G ) = (1= e |

where ¢ (z) = 7 /2 exp(—22/2) and €; = 1/2 have been accounted for.

Here the Fokker=Planck operator takes the form L* = (1/2)A — VI[b(z) -] and
b(r) = —z. Clearly b(z) = VIndé(z), as should be.
2 1 2y

p(z) = 63(x) = — exp(—=?)



About time rates to equilibrium in a trap (model independent statement)

k(y,z,t) = >, exp(—Ajt) ¢;(y)dj(x).

Universal features 0 < k(y,z,t) < e (y)ox)
ply.z,t) = k(y, z,t) ™ ¢ (z)/ b1 (y)
Asymptotic im0 p(y, 7, t) = p(x) = d3(2)
We denote: k(y,z,t) = eMtk(y, 2,t) /61 (2) 1 (y)
We employ an estimate valid for t>1 |E}_{y? r,t)— 1| < C e e A
The universal time rate formula ! (multiply both sides by p(z) = ¢%(z))

p(y, 7,t) — p(z)| < Ce M) p(x)

involves the energy gap (A:—A;) and the probability density p(z) = $3(x)



About a semigroup transcript of the Fokker-Planck dynamics

d: — _ \
Langevin equation d—r = F(x) + \2vb(t) F(x)=-dV(x)/dx
t
Fokker-Planck equation dp=vd,p—d(Fp)  Withanasymptoticstationary density

1/2
Multiplicative decomposition p(x.1) = W(x.n)exp[- V(x)2v] =¥(z.t)p,""(x)
b(x) =vVinp,(z)

Implies the semigroup evolution V¥V =vd, ¥V —V(x)¥ V(x) = —[ — +d.F

for a real-valued function ¥(z,t). We tacitly presume the potential to be

confining so that the positive definite ground state ¥ (z) = piﬁ{ﬂf) exists
and corresponds to the 0 eigenvalue of H. This can be always achieved
by subtracting the lowest non-zero eigenvalue of H, if actually in existence,
from the potential.

by (7) = J;;,}’E(I) corresponds to the zero eigenvalue of H — E;

and we have  @(z,t) = exp(+E1t) 52y e exp(—Ent) tn(x) = 1 (2) = pi/(2)

FPE can be rewritten: 8ip = |p?A (p;m ) _po 12 (ﬂpiﬁﬂ D



Back to conditioning and infinite life-times

The conditioning recipe examples in the above, directly involve integral (F-K)
kernels of contracting semigroups, whose generators have purely discrete spectral
solutions with the bottom eigenvalue being well separated from the rest of the
spectrum.

The procedure will surely work for potentials that are bounded from below, since
we can always redefine potentials with a bounded from below negative part, by
adding to V(x) a modulus of its minimal value |V (x,,;,)| or a modulus of any of its
multiple (identical) local minima: V(z) — V(z)+ |V (2, )| so arriving at V(z) > 0.

The redefined potential is nonnegative and gives rise to the diffusion-type process
with killing, whose transition density k(y, s|z,t) is given by the F-K formula.

How to handle absorption (i.e. to suppress killing) in case of the Brownian
motion on a line with a single barrier ?

We need not to have a discrete spectral solution at hand. The employed condi-
tioning formula appears to work properly also when the spectrum of the involved
semigroup generator 1s continuous. This is the case e.g. for a single absorbing
barrier problem in the 10 Brownian motion.



We set the sink at 0 and consider the Brownian motion as being restricted to the
positive semi-axis (r € R™).
The pertinent transition density is obtained via the method of images, by employing
the standard Brownian transition probability density (induced by (1/2)A)

p(y, s|z,t) = [2n(t — 5))] 7/ exp[—(z — y)*/27(t — s)]

Namely:

2 P+t (:cy)
k(y,s,|r,t) = ply, s|x.t) —pl—y, s|z,t) = exXp|— sinh
(y,s,|z,t) = p(y, sz, t) —p(—v, s|z, ) o) p[Qﬁ_Sﬂ PR

The large T behavior of k(y, s|u,T) is easily inferred to imply:

. 2 y? +u? wy
sl T) ~ el 2

Accordingly, the conditioned process has a transition probability density (that
arises in the ultimate T" — oo limit):

p(y, ;. t;u, T) — p(y, s|z. t) = k(y, |z, t) =

The forward drift of the process 1s calculable directly from the formula
b(r) = Vinr = 1/x. The Fokker-Planck generator takes the familiar (Bessel
process) form L* = (1/2)A — [b(x)-]. We note that the point 0 is presently
inaccessible for the process.



Links with Bessel processes

Told otherwise: the one-dimensional Brownian motion starting from y > 0,
conditioned to remain positive up to time 7', converges as T — oo to the radial
process of the three-dimensional Brownian motion, known a the Bessel process.

In the one-parameter family of Bessel processes, with drifts of the form
b(z) = (1 + 2a)/2x, in case of a > 0, the point z = 0 is never reached from
any y > 0 with probability one. To the contrary, for a < 0. the barrier at = = 0 is
absorbing (sink).

Let us recall the backward generator of the process: (1/2)A + b(x)V with
b(z) = (1 + 2a)/2x. The one-parameter family of pertinent transition densities
reads:

ar2a+1 2 apl .
Y Ty Iy
i(zg) P {‘ 2 ] I (5¢)
(zy)

Let us consider the special case of @ = +(1/2) for which the modified Bessel function

takes a handy form
2
I 5(2) =4/ — sinhz
1_.;2( ) — sinh

It is easy to verify that k_; (y, 8|z, 1) coincides with the transition density of the
Brownian motion constrained to stayv on R+, with a sink at 0. The generator
simply is (1/2)A on R*, with absorbing boundary at 0.

k.(y, s|lxz,t) =



On the other hand k,,/(y,s|z,t) is a transition probability density of the
previously derived Bessel process with b(r) = 1/x (e.g. the Brownian motion
conditioned to never reach 0, if started from any y > 0). Its F-P generator reads
(1/2)A — V(b(x)-), with b(z) = VInz.

Out of time comments

Quiery: how much of that conditioning strategy can we extend to jump-type
processes, specifically Levy-stable ones 7

Answer: Feynman-Kac kernels are computable, albeit basically without known
explicit analytic forms. Conditioning itself can be imposed in exactly the same way
(via Bernstein transition fucntions).

Link of the killed stochastic process and its "eternally living” partner can surely

be established. However, the latter is surely not a drifted random motion, in sharp
contrast to what we have met in the traditional Brownian motion context.

Thank you for attention



(Safe) ,Walk on the cliff” — Claude Monet




